forked from google-research/nasbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example.py
89 lines (74 loc) · 3.33 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Runnable example, as shown in the README.md."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from nasbench import api
# Replace this string with the path to the downloaded nasbench.tfrecord before
# executing.
NASBENCH_TFRECORD = '/path/to/nasbench.tfrecord'
INPUT = 'input'
OUTPUT = 'output'
CONV1X1 = 'conv1x1-bn-relu'
CONV3X3 = 'conv3x3-bn-relu'
MAXPOOL3X3 = 'maxpool3x3'
def main(argv):
del argv # Unused
# Load the data from file (this will take some time)
nasbench = api.NASBench(NASBENCH_TFRECORD)
# Create an Inception-like module (5x5 convolution replaced with two 3x3
# convolutions).
model_spec = api.ModelSpec(
# Adjacency matrix of the module
matrix=[[0, 1, 1, 1, 0, 1, 0], # input layer
[0, 0, 0, 0, 0, 0, 1], # 1x1 conv
[0, 0, 0, 0, 0, 0, 1], # 3x3 conv
[0, 0, 0, 0, 1, 0, 0], # 5x5 conv (replaced by two 3x3's)
[0, 0, 0, 0, 0, 0, 1], # 5x5 conv (replaced by two 3x3's)
[0, 0, 0, 0, 0, 0, 1], # 3x3 max-pool
[0, 0, 0, 0, 0, 0, 0]], # output layer
# Operations at the vertices of the module, matches order of matrix
ops=[INPUT, CONV1X1, CONV3X3, CONV3X3, CONV3X3, MAXPOOL3X3, OUTPUT])
# Query this model from dataset, returns a dictionary containing the metrics
# associated with this model.
print('Querying an Inception-like model.')
data = nasbench.query(model_spec)
print(data)
print(nasbench.get_budget_counters()) # prints (total time, total epochs)
# Get all metrics (all epoch lengths, all repeats) associated with this
# model_spec. This should be used for dataset analysis and NOT for
# benchmarking algorithms (does not increment budget counters).
print('\nGetting all metrics for the same Inception-like model.')
fixed_metrics, computed_metrics = nasbench.get_metrics_from_spec(model_spec)
print(fixed_metrics)
for epochs in nasbench.valid_epochs:
for repeat_index in range(len(computed_metrics[epochs])):
data_point = computed_metrics[epochs][repeat_index]
print('Epochs trained %d, repeat number: %d' % (epochs, repeat_index + 1))
print(data_point)
# Iterate through unique models in the dataset. Models are unqiuely identified
# by a hash.
print('\nIterating over unique models in the dataset.')
for unique_hash in nasbench.hash_iterator():
fixed_metrics, computed_metrics = nasbench.get_metrics_from_hash(
unique_hash)
print(fixed_metrics)
# For demo purposes, break here instead of iterating through whole set.
break
# If you are passing command line flags to modify the default config values, you
# must use app.run(main)
if __name__ == '__main__':
app.run(main)