-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathverifier.sol
619 lines (494 loc) · 22.7 KB
/
verifier.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
// SPDX-License-Identifier: GPL-3.0
/*
Copyright 2021 0KIMS association.
This file is generated with [snarkJS](https://github.com/iden3/snarkjs).
snarkJS is a free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
snarkJS is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with snarkJS. If not, see <https://www.gnu.org/licenses/>.
*/
pragma solidity >=0.7.0 <0.9.0;
contract PlonkVerifier {
uint32 constant n = 8;
uint16 constant nPublic = 1;
uint16 constant nLagrange = 1;
uint256 constant Qmx = 10294367845524522889674980414658158979115219665406612861401259333422895729896;
uint256 constant Qmy = 17339696279167455564514853058684962930296864414660175742312401951183098671156;
uint256 constant Qlx = 14297155691368363150439281660551929853142513799648244067851273621337387750022;
uint256 constant Qly = 9875708754215138125887194540142977977698752545665252035430927128878501866163;
uint256 constant Qrx = 0;
uint256 constant Qry = 0;
uint256 constant Qox = 10294367845524522889674980414658158979115219665406612861401259333422895729896;
uint256 constant Qoy = 4548546592671819657731552686572312158399446742637647920376635943462127537427;
uint256 constant Qcx = 0;
uint256 constant Qcy = 0;
uint256 constant S1x = 2694761611667402433549058650401049833973608710551146850129171008254242491412;
uint256 constant S1y = 4407815622841625592989621790140274705225113068749062773093818734897989348824;
uint256 constant S2x = 174950894878901504258554221888959060942005622520060188523927601854050691737;
uint256 constant S2y = 4218570225917094256073281485929194442981718242484973947497628954679969816940;
uint256 constant S3x = 5287191920074181963852791792640835974097875195213946104826736553520071559657;
uint256 constant S3y = 20309358409622118500558363825899879958276827259299017541094321370900713472551;
uint256 constant k1 = 2;
uint256 constant k2 = 3;
uint256 constant X2x1 = 21831381940315734285607113342023901060522397560371972897001948545212302161822;
uint256 constant X2x2 = 17231025384763736816414546592865244497437017442647097510447326538965263639101;
uint256 constant X2y1 = 2388026358213174446665280700919698872609886601280537296205114254867301080648;
uint256 constant X2y2 = 11507326595632554467052522095592665270651932854513688777769618397986436103170;
uint256 constant q = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
uint256 constant qf = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
uint256 constant w1 = 19540430494807482326159819597004422086093766032135589407132600596362845576832;
uint256 constant G1x = 1;
uint256 constant G1y = 2;
uint256 constant G2x1 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
uint256 constant G2x2 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
uint256 constant G2y1 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;
uint256 constant G2y2 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
uint16 constant pA = 32;
uint16 constant pB = 96;
uint16 constant pC = 160;
uint16 constant pZ = 224;
uint16 constant pT1 = 288;
uint16 constant pT2 = 352;
uint16 constant pT3 = 416;
uint16 constant pWxi = 480;
uint16 constant pWxiw = 544;
uint16 constant pEval_a = 608;
uint16 constant pEval_b = 640;
uint16 constant pEval_c = 672;
uint16 constant pEval_s1 = 704;
uint16 constant pEval_s2 = 736;
uint16 constant pEval_zw = 768;
uint16 constant pEval_r = 800;
uint16 constant pAlpha = 0;
uint16 constant pBeta = 32;
uint16 constant pGamma = 64;
uint16 constant pXi = 96;
uint16 constant pXin = 128;
uint16 constant pBetaXi = 160;
uint16 constant pV1 = 192;
uint16 constant pV2 = 224;
uint16 constant pV3 = 256;
uint16 constant pV4 = 288;
uint16 constant pV5 = 320;
uint16 constant pV6 = 352;
uint16 constant pU = 384;
uint16 constant pPl = 416;
uint16 constant pEval_t = 448;
uint16 constant pA1 = 480;
uint16 constant pB1 = 544;
uint16 constant pZh = 608;
uint16 constant pZhInv = 640;
uint16 constant pEval_l1 = 672;
uint16 constant lastMem = 704;
function verifyProof(bytes memory proof, uint[] memory pubSignals) public view returns (bool) {
assembly {
/////////
// Computes the inverse using the extended euclidean algorithm
/////////
function inverse(a, q) -> inv {
let t := 0
let newt := 1
let r := q
let newr := a
let quotient
let aux
for { } newr { } {
quotient := sdiv(r, newr)
aux := sub(t, mul(quotient, newt))
t:= newt
newt:= aux
aux := sub(r,mul(quotient, newr))
r := newr
newr := aux
}
if gt(r, 1) { revert(0,0) }
if slt(t, 0) { t:= add(t, q) }
inv := t
}
///////
// Computes the inverse of an array of values
// See https://vitalik.ca/general/2018/07/21/starks_part_3.html in section where explain fields operations
//////
function inverseArray(pVals, n) {
let pAux := mload(0x40) // Point to the next free position
let pIn := pVals
let lastPIn := add(pVals, mul(n, 32)) // Read n elemnts
let acc := mload(pIn) // Read the first element
pIn := add(pIn, 32) // Point to the second element
let inv
for { } lt(pIn, lastPIn) {
pAux := add(pAux, 32)
pIn := add(pIn, 32)
}
{
mstore(pAux, acc)
acc := mulmod(acc, mload(pIn), q)
}
acc := inverse(acc, q)
// At this point pAux pint to the next free position we substract 1 to point to the last used
pAux := sub(pAux, 32)
// pIn points to the n+1 element, we substract to point to n
pIn := sub(pIn, 32)
lastPIn := pVals // We don't process the first element
for { } gt(pIn, lastPIn) {
pAux := sub(pAux, 32)
pIn := sub(pIn, 32)
}
{
inv := mulmod(acc, mload(pAux), q)
acc := mulmod(acc, mload(pIn), q)
mstore(pIn, inv)
}
// pIn points to first element, we just set it.
mstore(pIn, acc)
}
function checkField(v) {
if iszero(lt(v, q)) {
mstore(0, 0)
return(0,0x20)
}
}
function checkInput(pProof) {
if iszero(eq(mload(pProof), 800 )) {
mstore(0, 0)
return(0,0x20)
}
checkField(mload(add(pProof, pEval_a)))
checkField(mload(add(pProof, pEval_b)))
checkField(mload(add(pProof, pEval_c)))
checkField(mload(add(pProof, pEval_s1)))
checkField(mload(add(pProof, pEval_s2)))
checkField(mload(add(pProof, pEval_zw)))
checkField(mload(add(pProof, pEval_r)))
// Points are checked in the point operations precompiled smart contracts
}
function calculateChallanges(pProof, pMem) {
let a
let b
b := mod(keccak256(add(pProof, pA), 192), q)
mstore( add(pMem, pBeta), b)
mstore( add(pMem, pGamma), mod(keccak256(add(pMem, pBeta), 32), q))
mstore( add(pMem, pAlpha), mod(keccak256(add(pProof, pZ), 64), q))
a := mod(keccak256(add(pProof, pT1), 192), q)
mstore( add(pMem, pXi), a)
mstore( add(pMem, pBetaXi), mulmod(b, a, q))
a:= mulmod(a, a, q)
a:= mulmod(a, a, q)
a:= mulmod(a, a, q)
mstore( add(pMem, pXin), a)
a:= mod(add(sub(a, 1),q), q)
mstore( add(pMem, pZh), a)
mstore( add(pMem, pZhInv), a) // We will invert later together with lagrange pols
let v1 := mod(keccak256(add(pProof, pEval_a), 224), q)
mstore( add(pMem, pV1), v1)
a := mulmod(v1, v1, q)
mstore( add(pMem, pV2), a)
a := mulmod(a, v1, q)
mstore( add(pMem, pV3), a)
a := mulmod(a, v1, q)
mstore( add(pMem, pV4), a)
a := mulmod(a, v1, q)
mstore( add(pMem, pV5), a)
a := mulmod(a, v1, q)
mstore( add(pMem, pV6), a)
mstore( add(pMem, pU), mod(keccak256(add(pProof, pWxi), 128), q))
}
function calculateLagrange(pMem) {
let w := 1
mstore(
add(pMem, pEval_l1),
mulmod(
n,
mod(
add(
sub(
mload(add(pMem, pXi)),
w
),
q
),
q
),
q
)
)
inverseArray(add(pMem, pZhInv), 2 )
let zh := mload(add(pMem, pZh))
w := 1
mstore(
add(pMem, pEval_l1 ),
mulmod(
mload(add(pMem, pEval_l1 )),
zh,
q
)
)
}
function calculatePl(pMem, pPub) {
let pl := 0
pl := mod(
add(
sub(
pl,
mulmod(
mload(add(pMem, pEval_l1)),
mload(add(pPub, 32)),
q
)
),
q
),
q
)
mstore(add(pMem, pPl), pl)
}
function calculateT(pProof, pMem) {
let t
let t1
let t2
t := addmod(
mload(add(pProof, pEval_r)),
mload(add(pMem, pPl)),
q
)
t1 := mulmod(
mload(add(pProof, pEval_s1)),
mload(add(pMem, pBeta)),
q
)
t1 := addmod(
t1,
mload(add(pProof, pEval_a)),
q
)
t1 := addmod(
t1,
mload(add(pMem, pGamma)),
q
)
t2 := mulmod(
mload(add(pProof, pEval_s2)),
mload(add(pMem, pBeta)),
q
)
t2 := addmod(
t2,
mload(add(pProof, pEval_b)),
q
)
t2 := addmod(
t2,
mload(add(pMem, pGamma)),
q
)
t1 := mulmod(t1, t2, q)
t2 := addmod(
mload(add(pProof, pEval_c)),
mload(add(pMem, pGamma)),
q
)
t1 := mulmod(t1, t2, q)
t1 := mulmod(t1, mload(add(pProof, pEval_zw)), q)
t1 := mulmod(t1, mload(add(pMem, pAlpha)), q)
t2 := mulmod(
mload(add(pMem, pEval_l1)),
mload(add(pMem, pAlpha)),
q
)
t2 := mulmod(
t2,
mload(add(pMem, pAlpha)),
q
)
t1 := addmod(t1, t2, q)
t := mod(sub(add(t, q), t1), q)
t := mulmod(t, mload(add(pMem, pZhInv)), q)
mstore( add(pMem, pEval_t) , t)
}
function g1_set(pR, pP) {
mstore(pR, mload(pP))
mstore(add(pR, 32), mload(add(pP,32)))
}
function g1_acc(pR, pP) {
let mIn := mload(0x40)
mstore(mIn, mload(pR))
mstore(add(mIn,32), mload(add(pR, 32)))
mstore(add(mIn,64), mload(pP))
mstore(add(mIn,96), mload(add(pP, 32)))
let success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
}
function g1_mulAcc(pR, pP, s) {
let success
let mIn := mload(0x40)
mstore(mIn, mload(pP))
mstore(add(mIn,32), mload(add(pP, 32)))
mstore(add(mIn,64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
mstore(add(mIn,64), mload(pR))
mstore(add(mIn,96), mload(add(pR, 32)))
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
}
function g1_mulAccC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn,32), y)
mstore(add(mIn,64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
mstore(add(mIn,64), mload(pR))
mstore(add(mIn,96), mload(add(pR, 32)))
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
}
function g1_mulSetC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn,32), y)
mstore(add(mIn,64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
}
function calculateA1(pProof, pMem) {
let p := add(pMem, pA1)
g1_set(p, add(pProof, pWxi))
g1_mulAcc(p, add(pProof, pWxiw), mload(add(pMem, pU)))
}
function calculateB1(pProof, pMem) {
let s
let s1
let p := add(pMem, pB1)
// Calculate D
s := mulmod( mload(add(pProof, pEval_a)), mload(add(pMem, pV1)), q)
g1_mulSetC(p, Qlx, Qly, s)
s := mulmod( s, mload(add(pProof, pEval_b)), q)
g1_mulAccC(p, Qmx, Qmy, s)
s := mulmod( mload(add(pProof, pEval_b)), mload(add(pMem, pV1)), q)
g1_mulAccC(p, Qrx, Qry, s)
s := mulmod( mload(add(pProof, pEval_c)), mload(add(pMem, pV1)), q)
g1_mulAccC(p, Qox, Qoy, s)
s :=mload(add(pMem, pV1))
g1_mulAccC(p, Qcx, Qcy, s)
s := addmod(mload(add(pProof, pEval_a)), mload(add(pMem, pBetaXi)), q)
s := addmod(s, mload(add(pMem, pGamma)), q)
s1 := mulmod(k1, mload(add(pMem, pBetaXi)), q)
s1 := addmod(s1, mload(add(pProof, pEval_b)), q)
s1 := addmod(s1, mload(add(pMem, pGamma)), q)
s := mulmod(s, s1, q)
s1 := mulmod(k2, mload(add(pMem, pBetaXi)), q)
s1 := addmod(s1, mload(add(pProof, pEval_c)), q)
s1 := addmod(s1, mload(add(pMem, pGamma)), q)
s := mulmod(s, s1, q)
s := mulmod(s, mload(add(pMem, pAlpha)), q)
s := mulmod(s, mload(add(pMem, pV1)), q)
s1 := mulmod(mload(add(pMem, pEval_l1)), mload(add(pMem, pAlpha)), q)
s1 := mulmod(s1, mload(add(pMem, pAlpha)), q)
s1 := mulmod(s1, mload(add(pMem, pV1)), q)
s := addmod(s, s1, q)
s := addmod(s, mload(add(pMem, pU)), q)
g1_mulAcc(p, add(pProof, pZ), s)
s := mulmod(mload(add(pMem, pBeta)), mload(add(pProof, pEval_s1)), q)
s := addmod(s, mload(add(pProof, pEval_a)), q)
s := addmod(s, mload(add(pMem, pGamma)), q)
s1 := mulmod(mload(add(pMem, pBeta)), mload(add(pProof, pEval_s2)), q)
s1 := addmod(s1, mload(add(pProof, pEval_b)), q)
s1 := addmod(s1, mload(add(pMem, pGamma)), q)
s := mulmod(s, s1, q)
s := mulmod(s, mload(add(pMem, pAlpha)), q)
s := mulmod(s, mload(add(pMem, pV1)), q)
s := mulmod(s, mload(add(pMem, pBeta)), q)
s := mulmod(s, mload(add(pProof, pEval_zw)), q)
s := mod(sub(q, s), q)
g1_mulAccC(p, S3x, S3y, s)
// calculate F
g1_acc(p , add(pProof, pT1))
s := mload(add(pMem, pXin))
g1_mulAcc(p, add(pProof, pT2), s)
s := mulmod(s, s, q)
g1_mulAcc(p, add(pProof, pT3), s)
g1_mulAcc(p, add(pProof, pA), mload(add(pMem, pV2)))
g1_mulAcc(p, add(pProof, pB), mload(add(pMem, pV3)))
g1_mulAcc(p, add(pProof, pC), mload(add(pMem, pV4)))
g1_mulAccC(p, S1x, S1y, mload(add(pMem, pV5)))
g1_mulAccC(p, S2x, S2y, mload(add(pMem, pV6)))
// calculate E
s := mload(add(pMem, pEval_t))
s := addmod(s, mulmod(mload(add(pProof, pEval_r)), mload(add(pMem, pV1)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_a)), mload(add(pMem, pV2)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_b)), mload(add(pMem, pV3)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_c)), mload(add(pMem, pV4)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_s1)), mload(add(pMem, pV5)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_s2)), mload(add(pMem, pV6)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_zw)), mload(add(pMem, pU)), q), q)
s := mod(sub(q, s), q)
g1_mulAccC(p, G1x, G1y, s)
// Last part of B
s := mload(add(pMem, pXi))
g1_mulAcc(p, add(pProof, pWxi), s)
s := mulmod(mload(add(pMem, pU)), mload(add(pMem, pXi)), q)
s := mulmod(s, w1, q)
g1_mulAcc(p, add(pProof, pWxiw), s)
}
function checkPairing(pMem) -> isOk {
let mIn := mload(0x40)
mstore(mIn, mload(add(pMem, pA1)))
mstore(add(mIn,32), mload(add(add(pMem, pA1), 32)))
mstore(add(mIn,64), X2x2)
mstore(add(mIn,96), X2x1)
mstore(add(mIn,128), X2y2)
mstore(add(mIn,160), X2y1)
mstore(add(mIn,192), mload(add(pMem, pB1)))
let s := mload(add(add(pMem, pB1), 32))
s := mod(sub(qf, s), qf)
mstore(add(mIn,224), s)
mstore(add(mIn,256), G2x2)
mstore(add(mIn,288), G2x1)
mstore(add(mIn,320), G2y2)
mstore(add(mIn,352), G2y1)
let success := staticcall(sub(gas(), 2000), 8, mIn, 384, mIn, 0x20)
isOk := and(success, mload(mIn))
}
let pMem := mload(0x40)
mstore(0x40, add(pMem, lastMem))
checkInput(proof)
calculateChallanges(proof, pMem)
calculateLagrange(pMem)
calculatePl(pMem, pubSignals)
calculateT(proof, pMem)
calculateA1(proof, pMem)
calculateB1(proof, pMem)
let isValid := checkPairing(pMem)
mstore(0x40, sub(pMem, lastMem))
mstore(0, isValid)
return(0,0x20)
}
}
}