forked from adam-subel/Burgers_DDP_and_TL
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Transfer_Learning.py
181 lines (116 loc) · 4.64 KB
/
Transfer_Learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import sys
import numpy as np
import scipy
import scipy.sparse as sparse
from scipy.sparse import linalg
import scipy.io as sio
import math
import keras
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras import layers
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.optimizers import rmsprop, SGD, Adagrad, Adadelta
from scipy.io import savemat
from scipy.io import loadmat
from scipy.fftpack import fft, ifft
def swish(x):
beta = 1.0
return beta * x * keras.backend.sigmoid(x)
train_num = 50000
train_region = 100000
train_start = train_region - train_num
num_pred = 20000
def normalize_data(data):
std_data = np.std(data)
mean_data = np.mean(data)
norm_data = (data-mean_data)/std_data
return norm_data, mean_data, std_data
def shift_data(data1,data2):
shifts = np.random.randint(0,data1.shape[1],data1.shape[0])
for i in range(data1.shape[0]):
data1[i,:] = np.concatenate((data1[i,shifts[i]:], data1[i,:shifts[i]]))
data2[i,:] = np.concatenate((data2[i,shifts[i]:], data2[i,:shifts[i]]))
return data1, data2
u_bar_dict = sio.loadmat('./u_bar_region_13.mat')
full_input=u_bar_store=u_bar_dict['u_bar'].transpose()
full_output = sio.loadmat('./PI_region_13.mat')
full_output=full_output['PI'].transpose()
full_input[:train_region,:], full_output[:train_region,:] = shift_data(full_input[:train_region,:],
full_output[:train_region,:])
norm_input, mean_input, std_input = normalize_data(full_input[:train_region,:])
norm_output, mean_output, std_output = normalize_data(full_output[:train_region,:])
training_input = norm_input
training_output = norm_output
print('shape of input')
print(np.shape(training_input))
print('shape of output')
print(np.shape(training_output))
index=np.random.permutation(train_region)
print(std_input)
print(std_output)
print(mean_input)
print(mean_output)
input_train=training_input[index[0:train_num],:]
output_train=training_output[index[0:train_num],:]
test_input=training_input[index[train_num:(train_num+num_pred)],:]
test_output=training_output[index[train_num:(train_num+num_pred)],:]
model = Sequential()
model.add(Dense(128,input_shape=(128,),activation=swish,trainable = False))
model.add(Dense(250,activation=swish, trainable = False))
model.add(Dense(250,activation=swish, trainable = False))
model.add(Dense(250,activation=swish, trainable = False))
model.add(Dense(250,activation=swish, trainable = False))
model.add(Dense(250,activation=swish, trainable = False))
model.add(Dense(250,activation=swish ))
model.add(Dense(128,activation=None))
model.compile(loss='mse', optimizer='Adam', metrics=['mae'])
model.load_weights('./weights_trained_ANN')
model.fit(input_train, output_train,epochs=50,batch_size=200,shuffle=True,validation_split=0.1)
model.save_weights('./weights_ANN_transfer_train')
pred_start = train_region + 50000
s=20
NX = 128
nu = 2e-2
dt = s*1e-2
Lx = 100
dx = Lx/NX
x = np.linspace(0, Lx-dx, num=NX)
kx = (2*math.pi/Lx)*np.concatenate((np.arange(0,NX/2+1,dtype=float),np.arange((-NX/2+1),0,dtype=float))).reshape([NX,1])
wave_num = np.concatenate((np.arange(0,int(NX/2+1)),np.arange(int(-NX/2+1),0)))
rho_bar = np.sin(2*math.pi*(wave_num/NX))/(2*math.pi*wave_num/NX)
rho_bar[0] = 1
maxit=100000
D1 = 1j*kx
D2 = kx*kx
D1 = D1.reshape([NX,1])
D2 = D2.reshape([NX,1])
D2_tensor = np.float32((D2[0:int(NX/2)]-np.mean(D2[0:int(NX/2)])/np.std(D2[0:int(NX/2)])))
D2x = 1 + 0.5*dt*nu*D2
u_store = np.zeros((NX,maxit))
sub_store = np.zeros((NX,maxit))
force_dict = sio.loadmat('./f_bar_all_regions.mat')
force_bar=force_dict['f_bar'][:,int(12*12500)+int(pred_start/s):]
u_old = full_input[pred_start-1,:].reshape([NX,1])
u = full_input[pred_start,:].reshape([NX,1])
u_fft = fft(u,axis=0)
u_old_fft = fft(u_old,axis=0)
subgrid_prev_n = model.predict(((u_old-mean_input)/std_input).reshape((1,NX))).reshape(NX,1)
subgrid_prev_n = subgrid_prev_n*std_output+mean_output
for i in range(maxit):
subgrid_n = model.predict(((u-mean_input)/std_input).reshape((1,NX))).reshape(NX,1)
subgrid_n = subgrid_n*std_output+mean_output
force=force_bar[:,i].reshape((NX,1))
F = D1*fft(.5*(u**2),axis=0)
F0 = D1*fft(.5*(u_old**2),axis=0)
uRHS = -0.5*dt*(3*F- F0) - 0.5*dt*nu*(D2*u_fft) + u_fft + dt*fft(force,axis=0) \
-fft(dt*3/2*subgrid_n + 1/2*dt*subgrid_prev_n,axis = 0)
subgrid_prev_n = subgrid_n
u_old_fft = u_fft
u_old = u
u_fft = uRHS/D2x.reshape([NX,1])
u = np.real(ifft(u_fft,axis=0))
u_store[:,i] = u.squeeze()
sub_store[:,i] = subgrid_n.squeeze()
sio.savemat('./DDP_results_transfer.mat',
{'u_pred':u_store, 'sub_pred':sub_store})