-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdspy_helpers.py
211 lines (173 loc) · 5.94 KB
/
dspy_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from dspy.teleprompt import (
BootstrapFewShot,
BootstrapFewShotWithRandomSearch,
BayesianSignatureOptimizer,
SignatureOptimizer,
BootstrapFewShotWithOptuna,
)
import random
import mlflow
import re
import json
def get_optimized_model_BootstrapFewShot(
model, trainset, valset, metric, random_search=True
):
config_bootstrap = dict(max_bootstrapped_demos=4, max_labeled_demos=4)
if random_search:
teleprompter = BootstrapFewShotWithRandomSearch(
metric=metric, **config_bootstrap
)
else:
teleprompter = BootstrapFewShot(metric=metric, **config_bootstrap)
optimized = teleprompter.compile(model, trainset=trainset, valset=valset)
return optimized
def get_optimized_model_BayesianSignatureOptimizer(model, trainset, metric):
# BayesianSignatureOptimizer
teleprompter = BayesianSignatureOptimizer(
metric=metric, n=10, init_temperature=1.0, verbose=False, track_stats=True
)
kwargs = dict(num_threads=4, display_progress=True, display_table=0)
optimized = teleprompter.compile(
model,
devset=trainset,
optuna_trials_num=5,
max_bootstrapped_demos=3,
max_labeled_demos=5,
eval_kwargs=kwargs,
)
return optimized
def get_optimized_model_SignatureOptimizer(model, trainset, metric):
teleprompter = SignatureOptimizer(
metric=metric, breadth=10, depth=3, init_temperature=1.4
)
kwargs = dict(num_threads=4, display_progress=True, display_table=0)
optimized = teleprompter.compile(
model.deepcopy(), devset=trainset, eval_kwargs=kwargs
)
return optimized
def get_optimized_model_BootstrapFewShotWithOptuna(model, trainset, valset, metric):
# BayesianSignatureOptimizer
teleprompter = BootstrapFewShotWithOptuna(metric=metric)
# kwargs = dict(num_threads=4, display_progress=True, display_table=0)
optimized = teleprompter.compile(model, trainset=trainset, valset=valset)
return optimized
def generate_run_name():
adjectives = [
"bold",
"quick",
"lively",
"brave",
"calm",
"eager",
"fierce",
"gentle",
"happy",
"jolly",
"keen",
"proud",
"sly",
"witty",
"young",
]
nouns = [
"duck",
"cat",
"dog",
"lion",
"tiger",
"bear",
"wolf",
"fox",
"eagle",
"hawk",
"owl",
"fish",
"shark",
"whale",
"dolphin",
]
# Select one adjective and one noun at random
adjective = random.choice(adjectives)
noun = random.choice(nouns)
# Generate a random number between 100 and 999
number = random.randint(100, 999)
# Combine the parts to form a run name
run_name = f"{adjective}-{noun}-{number}"
return run_name
def run_eval_and_log_to_mlflow(evaluator, model_to_evaluate):
(scores, outputs) = evaluator(
model_to_evaluate, return_all_scores=True, return_outputs=True
)
# print(scores)
# print(outputs)
# scores = 10 if scores == 0 else scores
mlflow.log_metric("accuracy", scores)
eval_results = []
for output in outputs:
# print("---")
# print(output)
# print("xxx")
input_example = output[0].toDict()
input_example["gold_answer"] = input_example.pop("answer")
generated_answer = output[1].toDict()
is_accurate = output[2]
merged_dict = {**input_example, **generated_answer}
merged_dict["correct"] = is_accurate
# print(merged_dict)
eval_results.append(merged_dict)
# break
# combined_dicts = [mlflow_dict, databricks_dict]
dict_for_mlflow_logging = {
key: [d[key] for d in eval_results] for key in eval_results[0]
}
# print(dict_for_mlflow_logging)
mlflow.log_table(data=dict_for_mlflow_logging, artifact_file="eval_results.json")
def log_model_dump_to_mlflow(model):
model_predictors = []
for item in model.named_predictors():
param_name = f"signature_{item[0]}"
param_name = re.sub(r"[^a-zA-Z0-9]", "", param_name)
model_predictors.append(
{
"param_name": item[0],
"param_value": str(item[1].extended_signature),
}
)
mlflow.log_param(
param_name, str(item[1].extended_signature)[:5990]
) # mlflow has a 6000 char limit
# i = i + 1
named_predictors_file = "model_named_predictors.json"
with open(named_predictors_file, "w") as f:
json.dump(model_predictors, f)
mlflow.log_artifact(named_predictors_file)
dump_state_file = "dump_state.json"
states = []
for key, value in model.dump_state().items():
states.append({str(key): str(value)})
# print(type(model.dump_state()))
with open(dump_state_file, "w") as f:
json.dump(states, f)
mlflow.log_artifact(dump_state_file)
mlflow.log_param("state", model.dump_state())
################
# Local tracking of calls sent to the LLM
################
def setup_arize_phoenix():
# Arize Phoenix instrumentation - must start a local server
from openinference.instrumentation.dspy import DSPyInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
# Trace logging
endpoint = "http://127.0.0.1:6006/v1/traces"
resource = Resource(attributes={})
tracer_provider = trace_sdk.TracerProvider(resource=resource)
span_otlp_exporter = OTLPSpanExporter(endpoint=endpoint)
tracer_provider.add_span_processor(
SimpleSpanProcessor(span_exporter=span_otlp_exporter)
)
trace_api.set_tracer_provider(tracer_provider=tracer_provider)
DSPyInstrumentor().instrument()