-
Notifications
You must be signed in to change notification settings - Fork 13
/
cont_ca_sampler.m
420 lines (377 loc) · 16.2 KB
/
cont_ca_sampler.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
function SAMPLES = cont_ca_sampler(Y,params)
% MCMC continuous time sampler of spiketimes given a fluorescence trace Y
% Inputs:
% Y data
% params parameters structure
% params.g discrete time constant(s) (estimated if not provided)
% params.sn initializer for noise (estimated if not provided)
% params.b initializer for baseline (estimated if not provided)
% params.c1 initializer for initial concentration (estimated if not provided)
% params.Nsamples number of samples after burn in (default 400)
% params.B number of burn in samples (default 200)
% params.marg flag for marginalized sampler for baseline and initial concentration (default 0)
% params.upd_gam flag for updating gamma (default 1)
% params.gam_step number of samples after which gamma is updated (default 1)
% params.std_move standard deviation of shifting kernel (default 3*Dt)
% params.add_move number of add moves per iteration (default T/100)
% params.init initial sample
% params.f imaging rate (default 1)
% params.p order of AR model (p == 1 or p == 2, default 1)
% params.defg default discrete time constants in case constrained_foopsi cannot find stable estimates (default [0.6 0.95])
% params.TauStd standard deviation for time constants in continuous time (default [0.2,2])
% params.A_lb lower bound for spike amplitude (default 0.1*range(Y))
% params.b_lb lower bound for baseline (default 0.01 quantile of Y)
% params.c1_lb lower bound for initial value (default 0)
% output struct SAMPLES
% ss Nsamples x 1 cells with spike times for each sample
% ns Nsamples x 1 vector with number of spikes
% Am Nsamples x 1 vector with samples for spike amplitude
% ld Nsamples x 1 vector with samples for firing rate
% If marginalized sampler is used (params.marg = 1)
% Cb posterior mean and sd for baseline
% Cin posterior mean and sd for initial condition
% else
% Cb Nsamples x 1 vector with samples for baseline
% Cin Nsamples x 1 vector with samples for initial concentration
% sn Nsamples x 1 vector with samples for noise variance
% If gamma is updated (params.upd_gam = 1)
% g Nsamples x p vector with the gamma updates
% Author: Eftychios A. Pnevmatikakis and Josh Merel
% Reference: Pnevmatikakis et al., Bayesian spike inference from calcium
% imaging data, Asilomar 2013.
Y = Y(:);
T = length(Y);
isanY = ~isnan(Y); % Deal with possible missing entries
E = speye(T);
E = E(isanY,:);
% define default parameters
defparams.g = []; % initializer for time constants
defparams.sn = []; % initializer for noise std
defparams.b = []; % initializer for baseline concentration
defparams.c1 = []; % initializer for initial concentration
defparams.c = []; % initializer for calcium concentration
defparams.sp = []; % initializer for spiking signal
defparams.bas_nonneg = 0; % allow negative baseline during initialization
defparams.Nsamples = 400; % number of samples after burn in period
defparams.B = 200; % length of burn in period
defparams.marg = 0; % flag to marginalize out baseline and initial concentration
defparams.upd_gam = 1; % flag for updating time constants
defparams.gam_step = 1; % flag for how often to update time constants
defparams.A_lb = 0.1*range(Y); % lower bound for spike amplitude
defparams.b_lb = quantile(Y,0.01); % lower bound for baseline
defparams.c1_lb = 0; % lower bound for initial concentration
defparams.std_move = 3; % standard deviation of spike move kernel
defparams.add_move = ceil(T/100); % number of add moves
defparams.init = []; % sampler initializer
defparams.f = 1; % imaging rate (irrelevant)
defparams.p = 1; % order of AR process (use p = 1 or p = 2)
defparams.defg = [0.6,0.95]; % default time constant roots
defparams.TauStd = [.2,2]; % Standard deviation for time constant proposal
defparams.prec = 1e-2; % Precision parameter when adding new spikes
defparams.con_lam = true; % Flag for constant firing across time
defparams.print_flag = 0;
if nargin < 2
params = defparams;
else
if ~isfield(params,'g'); params.g = defparams.g; end
if ~isfield(params,'sn'); params.sn = defparams.sn; end
if ~isfield(params,'b'); params.b = defparams.b; end
if ~isfield(params,'c1'); params.c1 = defparams.c1; end
if ~isfield(params,'c'); params.c = defparams.c; end
if ~isfield(params,'sp'); params.sp = defparams.sp; end
if ~isfield(params,'bas_nonneg'); params.bas_nonneg = defparams.bas_nonneg; end
if ~isfield(params,'Nsamples'); params.Nsamples = defparams.Nsamples; end
if ~isfield(params,'B'); params.B = defparams.B; end
if ~isfield(params,'marg'); params.marg = defparams.marg; end
if ~isfield(params,'upd_gam'); params.upd_gam = defparams.upd_gam; end
if ~isfield(params,'gam_step'); params.gam_step = defparams.gam_step; end
if ~isfield(params,'std_move'); params.std_move = defparams.std_move; end
if ~isfield(params,'add_move'); params.add_move = defparams.add_move; end
if ~isfield(params,'init'); params.init = defparams.init; end
if ~isfield(params,'f'); params.f = defparams.f; end
if ~isfield(params,'p'); params.p = defparams.p; end
if ~isfield(params,'defg'); params.defg = defparams.defg; end
if ~isfield(params,'TauStd'); params.TauStd = defparams.TauStd; end
if ~isfield(params,'A_lb'); params.A_lb = defparams.A_lb; end
if ~isfield(params,'b_lb'); params.b_lb = defparams.b_lb; end
if ~isfield(params,'c1_lb'); params.c1_lb = defparams.c1_lb; end
if ~isfield(params,'prec'); params.prec = defparams.prec; end
if ~isfield(params,'con_lam'); params.con_lam = defparams.con_lam; end
if ~isfield(params,'print_flag'); params.print_flag = defparams.print_flag; end
end
Dt = 1; % length of time bin
marg_flag = params.marg;
gam_flag = params.upd_gam;
gam_step = params.gam_step;
std_move = params.std_move;
add_move = params.add_move;
if isempty(params.init)
params.init = get_initial_sample(Y,params);
end
SAM = params.init;
if isempty(params.g)
p = params.p;
else
p = length(params.g); % order of autoregressive process
end
g = SAM.g(:)'; % check initial time constants, if not reasonable set to default values
if g == 0
gr = params.defg;
pl = poly(gr);
g = -pl(2:end);
p = 2;
end
gr = sort(roots([1,-g(:)']));
if p == 1; gr = [0,max(gr)]; end
if any(gr<0) || any(~isreal(gr)) || length(gr)>2 || max(gr)>0.998
gr = params.defg;
end
tau = -Dt./log(gr);
tau1_std = max(tau(1)/100,params.TauStd(1));
tau2_std = min(tau(2)/5,params.TauStd(2));
ge = max(gr).^(0:T-1)';
if p == 1
G1 = sparse(1:T,1:T,Inf*ones(T,1));
elseif p == 2
G1 = spdiags(ones(T,1)*[-min(gr),1],[-1:0],T,T);
else
error('This order of the AR process is currently not supported');
end
G2 = spdiags(ones(T,1)*[-max(gr),1],[-1:0],T,T);
sg = SAM.sg;
spiketimes_ = SAM.spiketimes_;
lam_ = SAM.lam_;
A_ = SAM.A_*diff(gr);
b_ = max(SAM.b_,prctile(Y,8));
C_in = max(min(SAM.C_in,Y(1)-b_),0);
s_1 = zeros(T,1);
s_2 = zeros(T,1);
s_1(ceil(spiketimes_/Dt)) = exp((spiketimes_ - Dt*ceil(spiketimes_/Dt))/tau(1));
s_2(ceil(spiketimes_/Dt)) = exp((spiketimes_ - Dt*ceil(spiketimes_/Dt))/tau(2));
prec = params.prec;
ef_d = exp(-(0:T)/tau(2)); % construct transient exponentials
if p == 1
h_max = 1; % max value of transient
ef_h = [0,0];
e_support = find(ef_d<prec*h_max,1,'first');
if isempty(e_support);
e_support = T;
end
e_support = min(e_support,T);
else
t_max = (tau(1)*tau(2))/(tau(2)-tau(1))*log(tau(2)/tau(1)); %time of maximum
h_max = exp(-t_max/tau(2)) - exp(-t_max/tau(1)); % max value of transient
ef_h = -exp(-(0:T)/tau(1));
e_support = find(ef_d-ef_h<prec*h_max,1,'first');
if isempty(e_support);
e_support = T;
end
e_support = min(e_support,T);
end
ef_h = ef_h(1:min(e_support,length(ef_h)))/diff(gr);
ef_d = ef_d(1:e_support)/diff(gr);
ef = [{ef_h ef_d};{cumsum(ef_h.^2) cumsum(ef_d.^2)}];
B = params.B;
N = params.Nsamples + B;
if p == 1; G1sp = zeros(T,1); else G1sp = G1\s_1(:); end
Gs = (-G1sp(:)+G2\s_2(:))/diff(gr);
ss = cell(N,1);
lam = zeros(N,1);
Am = zeros(N,1);
ns = zeros(N,1);
Gam = zeros(N,2);
if ~marg_flag
Cb = zeros(N,1);
Cin = zeros(N,1);
SG = zeros(N,1);
end
Sp = .1*range(Y)*eye(3); % prior covariance for [A,Cb,Cin]
Ld = inv(Sp);
lb = [params.A_lb/h_max*diff(gr),params.b_lb,params.c1_lb]'; % lower bound for [A,Cb,Cin]
A_ = max(A_,1.1*lb(1));
mu = [A_;b_;C_in]; % prior mean
Ns = 15; % Number of HMC samples
Ym = Y - ones(T,1)*mu(2) - ge*mu(3);
mub = zeros(2,1);
Sigb = zeros(2,2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Extra tau-related params
%%%%%%%%%%%%%%%%%%%%%%%%%%%
tauMoves = [0 0];
tau_min = 0;
tau_max = 500;
%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:N
if gam_flag
Gam(i,:) = tau;
end
sg_ = sg;
rate = @(t) lambda_rate(t,lam_);
[spiketimes, ~] = get_next_spikes(spiketimes_(:)',A_*Gs',Ym',ef,tau,sg_^2, rate, std_move, add_move, Dt, A_, params.con_lam);
spiketimes(spiketimes<0) = -spiketimes(spiketimes<0);
spiketimes(spiketimes>T*Dt) = 2*T*Dt - spiketimes(spiketimes>T*Dt);
spiketimes_ = spiketimes;
trunc_spikes = ceil(spiketimes/Dt);
trunc_spikes(trunc_spikes == 0) = 1;
s_1 = zeros(T,1);
s_2 = zeros(T,1);
s_1(trunc_spikes) = exp((spiketimes_ - Dt*trunc_spikes)/tau(1));
s_2(trunc_spikes) = exp((spiketimes_ - Dt*trunc_spikes)/tau(2));
if p == 1; G1sp = zeros(T,1); else G1sp = G1\s_1(:); end
Gs = (-G1sp+G2\s_2(:))/diff(gr);
%s_ = s_2 - s_1 - min(gr)*[0;s_2(1:end-1)] + max(gr)*[0;s_1(1:end-1)];
%Gs = filter(1,[1,-sum(gr),prod(gr)]',s_/diff(gr));
ss{i} = spiketimes;
nsp = length(spiketimes);
ns(i) = nsp;
lam(i) = nsp/(T*Dt);
lam_ = lam(i);
AM = [Gs,ones(T,1),ge];
EAM = E*AM;
L = inv(Ld + EAM'*EAM/sg^2);
mu_post = (Ld + EAM'*EAM/sg^2)\(EAM'*Y(isanY)/sg^2 + Sp\mu);
if ~marg_flag
x_in = [A_;b_;C_in];
if any(x_in <= lb)
x_in = max(x_in,(1+0.1*sign(lb)).*lb) + 1e-5;
end
if all(isnan(L(:))) % FN added to avoid error in R = chol(L) in HMC_exact2 due to L not being positive definite. It happens when isnan(det(Ld + AM'*AM/sg^2)), ie when Ld + AM'*AM/sg^2 is singular (not invertible).
Am(i) = NaN;
Cb(i) = NaN;
Cin(i) = NaN';
else
[temp,~] = HMC_exact2(eye(3), -lb, L, mu_post, 1, Ns, x_in);
Am(i) = temp(1,Ns);
Cb(i) = temp(2,Ns);
Cin(i) = temp(3,Ns)';
end
A_ = Am(i);
b_ = Cb(i);
C_in = Cin(i);
Ym = Y - b_ - ge*C_in;
res = Ym - A_*Gs;
sg = 1./sqrt(gamrnd(1+length(isanY)/2,1/(0.1 + sum((res(isanY).^2)/2))));
SG(i) = sg;
else
repeat = 1;
cnt = 0;
while repeat
A_ = mu_post(1) + sqrt(L(1,1))*randn;
repeat = (A_<0);
cnt = cnt + 1;
if cnt > 1e3
error('The marginalized sampler cannot find a valid amplitude value. Set params.marg = 0 and try again.')
end
end
Am(i) = A_;
if i > B
mub = mub + mu_post(2:3); %mu_post(1+(1:p));
Sigb = Sigb + L(2:3,2:3); %L(1+(1:p),1+(1:p));
end
end
if gam_flag
if mod(i-B,gam_step) == 0 % update time constants
if p >= 2 % update rise time constant
logC = -norm(Y(isanY) - EAM*[A_;b_;C_in])^2;
tau_ = tau;
tau_temp = tau_(1)+(tau1_std*randn);
while tau_temp >tau(2) || tau_temp<tau_min
tau_temp = tau_(1)+(tau1_std*randn);
end
tau_(1) = tau_temp;
gr_ = exp(Dt*(-1./tau_));
s_1_ = zeros(T,1);
s_1_(trunc_spikes) = exp((spiketimes_ - Dt*trunc_spikes)/tau_(1));
G1_ = spdiags(ones(T,1)*[-min(gr_),1],[-1:0],T,T);
Gs_ = (-G1_\s_1_(:)+G2\s_2(:))/diff(gr_);
logC_ = -norm(E*(Y(:)-A_*Gs-b_-C_in*ge))^2;
%accept or reject
prior_ratio = 1;
ratio = exp((logC_-logC)/(2*sg^2))*prior_ratio;
if rand < ratio %accept
tau = tau_;
G1 = G1_; %c = c_;
Gs = Gs_; gr = gr_; s_1 = s_1_;
tauMoves = tauMoves + [1 1];
else
tauMoves = tauMoves + [0 1];
end
end
%%%%%%%%%%%%%%%%%%%%%%%
% next update decay time constant
%%%%%%%%%%%%%%%%%%%%%%%
%initial logC
logC = -norm(E*(Y(:)-A_*Gs-b_-C_in*ge))^2;
tau_ = tau;
tau_temp = tau_(2)+(tau2_std*randn);
while tau_temp>tau_max || tau_temp<tau_(1)
tau_temp = tau_(2)+(tau2_std*randn);
end
tau_(2) = tau_temp;
s_2_ = zeros(T,1);
s_2_(trunc_spikes) = exp((spiketimes_ - Dt*trunc_spikes)/tau_(2));
gr_ = exp(Dt*(-1./tau_));
ge_ = max(gr_).^(0:T-1)';
if p == 1; G1sp = zeros(T,1); else G1sp = G1\s_1(:); end
G2_ = spdiags(ones(T,1)*[-max(gr_),1],[-1:0],T,T);
Gs_ = (-G1sp+G2_\s_2_(:))/diff(gr_);
logC_ = -norm(E*(Y(:)-A_*Gs_-b_-C_in*ge_))^2;
%accept or reject
prior_ratio = 1;
ratio = exp((1./(2*sg^2)).*(logC_-logC))*prior_ratio;
if rand<ratio %accept
tau = tau_;
%c = c_;
ge = ge_; Gs = Gs_; G2 = G2_; gr = gr_; s_2 = s_2_;
tauMoves = tauMoves + [1 1];
else
tauMoves = tauMoves + [0 1];
end
ef_d = exp(-(0:T)/tau(2));
if p == 1
h_max = 1; % max value of transient
ef_h = [0,0];
e_support = find(ef_d<prec*h_max,1,'first');
if isempty(e_support);
e_support = T;
end
e_support = min(e_support,T);
else
t_max = (tau(1)*tau(2))/(tau(2)-tau(1))*log(tau(2)/tau(1)); %time of maximum
h_max = exp(-t_max/tau(2)) - exp(-t_max/tau(1)); % max value of transient
ef_h = -exp(-(0:T)/tau(1));
e_support = find(ef_d-ef_h<prec*h_max,1,'first');
if isempty(e_support);
e_support = T;
end
e_support = min(e_support,T);
end
ef_h = ef_h(1:min(e_support,length(ef_h)))/diff(gr);
ef_d = ef_d(1:e_support)/diff(gr);
ef = [{ef_h ef_d};{cumsum(ef_h.^2) cumsum(ef_d.^2)}];
end
end
if params.print_flag && mod(i,100)==0
fprintf('%i out of total %i samples drawn \n', i, N);
end
end
if marg_flag
mub = mub/(N-B);
Sigb = Sigb/(N-B)^2;
end
if marg_flag
SAMPLES.Cb = [mub(1),sqrt(Sigb(1,1))];
SAMPLES.Cin = [mub(2),sqrt(Sigb(2,2))]; %[mub(1+(1:p)),sqrt(diag(Sigb(1+(1:p),1+(1:p))))];
else
SAMPLES.Cb = Cb(B+1:N);
SAMPLES.Cin = Cin(B+1:N,:);
SAMPLES.sn2 = SG(B+1:N).^2;
end
SAMPLES.ns = ns(B+1:N);
SAMPLES.ss = ss(B+1:N);
SAMPLES.ld = lam(B+1:N);
SAMPLES.Am = Am(B+1:N);
if gam_flag
SAMPLES.g = Gam(B+1:N,:);
end
SAMPLES.params = params.init;