-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
86 lines (59 loc) · 2.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from hyperparameters import *
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
'''Actor (Policy) Model'''
def __init__(self, input_dim, output_dim, seed=10, fc1_units=ACTOR_FC1_UNITS, fc2_units=ACTOR_FC2_UNITS):
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
# Dense layers
self.fc1 = nn.Linear(input_dim, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, output_dim)
# BatchNorm layers
self.bn1 = nn.BatchNorm1d(fc1_units)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
'''Build an actor (policy) network that maps states -> actions'''
# Reshape for BatchNorm
if state.dim() == 1:
state = torch.unsqueeze(state,0)
x = F.relu(self.fc1(state))
x = self.bn1(x)
x = F.relu(self.fc2(x))
return F.tanh(self.fc3(x))
class Critic(nn.Module):
'''Critic Model'''
def __init__(self, input_dim, action_size, seed=10, fcs1_units=CRITIC_FCS1_UNITS, fc2_units=CRITIC_FC2_UNITS):
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(input_dim+action_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
# BatchNorm layers
self.bn1 = nn.BatchNorm1d(fcs1_units)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
'''Build a critic network that maps (state, action) pairs -> Q-values'''
# Reshape the state for BatchNorm
if state.dim() == 1:
state = torch.unsqueeze(state,0)
xs = torch.cat((state, action.float()), dim=1)
x = F.relu(self.fcs1(xs))
x = self.bn1(x)
x = F.relu(self.fc2(x))
return self.fc3(x)