forked from hidasib/GRU4Rec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_theano_ops.py
595 lines (526 loc) · 25.3 KB
/
custom_theano_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
from theano import tensor, gof, Op, config
from theano.gof import ParamsType
from theano.gradient import grad_not_implemented
import theano.tensor as T
from theano.gpuarray.subtensor import GpuAdvancedSubtensor1
from theano.scalar import bool as bool_t, int32 as int_t, uint32 as size_t
try:
import pygpu
from pygpu import gpuarray
except ImportError:
pass
from theano.gpuarray.type import GpuArrayType, gpu_context_type, get_context
from theano.gpuarray.basic_ops import (as_gpuarray_variable, HideC, GpuKernelBase, Kernel, gpuarray_helper_inc_dir, infer_context_name, gpu_contiguous)
from theano.gpuarray.fp16_help import write_w, load_w, work_dtype
class GpuExtractDiag2D(GpuKernelBase, Op):
"""
Extracting diagonal of a 2D matrix on the GPU.
"""
__props__ = ('context_name', 'keepdims')
_f16_ok = True
params_type = ParamsType(context=gpu_context_type, keepdims=bool_t)
def __init__(self, context_name=None, keepdims=False):
self.context_name = context_name
self.keepdims = keepdims
def get_params(self, node):
return self.params_type.get_params(self, context=get_context(self.context_name), keepdims=self.keepdims)
def make_node(self, x, k=0): #TODO: dtype check
x = as_gpuarray_variable(x, context_name=self.context_name)
k = tensor.as_tensor_variable(k)
assert x.ndim == 2
assert k.ndim == 0
broadcastable = (False,True) if self.keepdims else (False,)
otype = GpuArrayType(dtype=x.type.dtype, broadcastable=broadcastable, context_name=self.context_name)
return gof.Apply(self, [x, k], [otype()])
def infer_shape(self, node, in_shapes):
in_shape, _ = in_shapes
dim1 = in_shape[0]
dim2 = in_shape[1]
k = node.inputs[1]
diag_size = T.switch(T.ge(k, 0), T.clip(dim2 - k, 0, dim1), T.clip(dim1 + k, 0, dim2))
if self.keepdims:
diag_size = (diag_size, 1)
else:
diag_size = (diag_size,)
return [diag_size]
def grad(self, inp, grads):
return [GpuAllocDiag2D()(grads[0], inp[1], *(inp[0].shape)), grad_not_implemented(self, 1, inp[1])]
def gpu_kernels(self, node, name):
dtype_x = node.inputs[0].dtype
type_x = gpuarray.dtype_to_ctype(dtype_x)
dtype_y = node.outputs[0].dtype
type_y = gpuarray.dtype_to_ctype(dtype_y)
work_x = gpuarray.dtype_to_ctype(work_dtype(dtype_x))
load_x = load_w(dtype_x)
write_y = write_w(dtype_y)
code = """
#include "cluda.h"
KERNEL void extract(const ga_ssize stridesX0, const ga_ssize stridesX1, GLOBAL_MEM %(type_x)s *x, ga_size x_off, const ga_ssize stridesY0, GLOBAL_MEM %(type_y)s *y, ga_size y_off, ga_ssize k, ga_size l) {
x = (GLOBAL_MEM %(type_x)s *)(((GLOBAL_MEM char *)x) + x_off);
y = (GLOBAL_MEM %(type_y)s *)(((GLOBAL_MEM char *)y) + y_off);
ga_ssize coff = max(k, (ga_ssize) 0);
ga_ssize roff = -min(k, (ga_ssize) 0);
ga_size index = GID_0 * LDIM_0 + LID_0;
if (index < l) {
%(work_x)s t = %(load_x)s(x[(index + roff) * stridesX0 + (index + coff) * stridesX1]);
y[index * stridesY0] = %(write_y)s(t);
}
}""" % dict(type_x=type_x, type_y=type_y, work_x=work_x, load_x=load_x, write_y=write_y, name=name)
return [Kernel(
code=code, name="extract",
params=[gpuarray.SSIZE, gpuarray.SSIZE, gpuarray.GpuArray, gpuarray.SIZE, gpuarray.SSIZE, gpuarray.GpuArray, gpuarray.SIZE, gpuarray.SSIZE, gpuarray.SIZE],
flags=Kernel.get_flags(dtype_x, dtype_y),
objvar='k_extract_' + name)]
def c_headers(self):
return ['<numpy_compat.h>', '<gpuarray_helper.h>', '<gpuarray/types.h>']
def c_header_dirs(self):
return [gpuarray_helper_inc_dir()]
def c_code(self, node, name, inp, out, sub): #TODO: fix error msg
x, k = inp
y, = out
fail = sub['fail']
params = sub['params']
typecode = pygpu.gpuarray.dtype_to_typecode(node.inputs[0].dtype)
kname = self.gpu_kernels(node, name)[0].objvar
s = """
int err;
size_t* dims = (size_t*)PyGpuArray_DIMS((PyGpuArrayObject*)%(x)s);
size_t k = ((dtype_%(k)s*)PyArray_DATA(%(k)s))[0];
size_t col_off = (size_t) (k > 0?k:0);
size_t row_off = (size_t) (k < 0?-k:0);
size_t diag_size = (size_t) std::max((ssize_t) std::min((ssize_t)dims[0] - (ssize_t)row_off, (ssize_t)dims[1] - (ssize_t)col_off), (ssize_t) 0);
size_t ls = std::min(diag_size, (size_t) 1024);
size_t gs = (diag_size + ls - 1) / ls;
size_t ndims = %(params)s->keepdims ? 2 : 1;
size_t out_dims[ndims];
out_dims[0] = diag_size;
if (ndims == 2) {
out_dims[1] = 1;
}
size_t itemsize_x = 1;
size_t itemsize_y = 1;
ssize_t stridesX0 = 1;
ssize_t stridesX1 = 1;
ssize_t stridesY0 = 1;
if (%(y)s == NULL || %(y)s->ga.nd != ndims || %(y)s->ga.dimensions[0] != diag_size || (ndims > 1 && %(y)s->ga.dimensions[1] != 1)) {
Py_CLEAR(%(y)s);
%(y)s = pygpu_empty(ndims, out_dims, %(typecode)s, GA_C_ORDER, %(params)s->context, Py_None);
}
if (%(y)s == NULL) {
%(fail)s
}
itemsize_x = GpuArray_ITEMSIZE(&%(x)s->ga);
itemsize_y = GpuArray_ITEMSIZE(&%(y)s->ga);
stridesX0 = PyGpuArray_STRIDES(%(x)s)[0] / itemsize_x;
stridesX1 = PyGpuArray_STRIDES(%(x)s)[1] / itemsize_x;
stridesY0 = PyGpuArray_STRIDES(%(y)s)[0] / itemsize_y;
if (row_off < dims[0] && col_off < dims[1]) {
err = extract_call(1, &gs, &ls, 0, stridesX0, stridesX1, %(x)s->ga.data, %(x)s->ga.offset, stridesY0, %(y)s->ga.data, %(y)s->ga.offset, k, diag_size);
if (err != GA_NO_ERROR) {
PyErr_Format(PyExc_RuntimeError, "gpuarray error: kExtract: %%s. n%%lu, m=%%lu.", GpuKernel_error(&%(kname)s, err), (unsigned long)dims[0], (unsigned long)dims[1]);
%(fail)s;
}
} else {
%(fail)s;
}
""" % locals()
return s
def c_code_cache_version(self):
return (1,)
class GpuAllocDiag2D(GpuKernelBase, Op):
"""
Making a diagonal matrix from a vector on GPU
"""
__props__ = ('context_name',)
_f16_ok = True
def __init__(self, context_name=None):
self.context_name = context_name
def get_params(self, node):
return get_context(self.context_name)
def make_node(self, x, k=0, n=0, m=0): #TODO: dtype check
x = as_gpuarray_variable(x, context_name=self.context_name)
k = tensor.as_tensor_variable(k)
n = tensor.as_tensor_variable(n)
m = tensor.as_tensor_variable(m)
assert x.ndim == 2 or x.ndim == 1
assert k.ndim == 0
assert n.ndim == 0
assert m.ndim == 0
otype = GpuArrayType(dtype=x.type.dtype, broadcastable=(False,False), context_name=self.context_name)
return gof.Apply(self, [x, k, n, m], [otype()])
def infer_shape(self, node, in_shapes):
in_shape, _, _, _ = in_shapes
k, n, m = node.inputs[1:]
dim_in = in_shape[0]
dim_out1 = T.maximum(T.switch(T.ge(k,0), dim_in, dim_in-k), n)
dim_out2 = T.maximum(T.switch(T.ge(k,0), dim_in+k, dim_in), m)
return [(dim_out1, dim_out2)]
def grad(self, inp, grads):
return [GpuExtractDiag2D(keepdims=(inp[0].ndim==2))(grads[0], inp[1])] + [grad_not_implemented(self, i, inp[i]) for i in range(1,4)]
def gpu_kernels(self, node, name):
dtype_x = node.inputs[0].dtype
type_x = gpuarray.dtype_to_ctype(dtype_x)
dtype_y = node.outputs[0].dtype
type_y = gpuarray.dtype_to_ctype(dtype_y)
work_x = gpuarray.dtype_to_ctype(work_dtype(dtype_x))
load_x = load_w(dtype_x)
write_y = write_w(dtype_y)
code = """
#include "cluda.h"
KERNEL void dalloc(const ga_ssize stridesX0, GLOBAL_MEM %(type_x)s *x, ga_size x_off, const ga_ssize stridesY0, const ga_ssize stridesY1, GLOBAL_MEM %(type_y)s *y, ga_size y_off, ga_ssize k, ga_size l) {
x = (GLOBAL_MEM %(type_x)s *)(((GLOBAL_MEM char *)x) + x_off);
y = (GLOBAL_MEM %(type_y)s *)(((GLOBAL_MEM char *)y) + y_off);
ga_ssize coff = max(k, (ga_ssize) 0);
ga_ssize roff = -min(k, (ga_ssize) 0);
ga_size index = GID_0 * LDIM_0 + LID_0;
if (index < l) {
%(work_x)s t = %(load_x)s(x[index * stridesX0]);
y[(index + roff) * stridesY0 + (index + coff) * stridesY1] = %(write_y)s(t);
}
}""" % dict(type_x=type_x, type_y=type_y, work_x=work_x, load_x=load_x, write_y=write_y, name=name)
return [Kernel(
code=code, name="dalloc",
params=[gpuarray.SSIZE, gpuarray.GpuArray, gpuarray.SIZE, gpuarray.SSIZE, gpuarray.SSIZE, gpuarray.GpuArray, gpuarray.SIZE, gpuarray.SIZE, gpuarray.SIZE],
flags=Kernel.get_flags(dtype_x, dtype_y),
objvar='k_dalloc_' + name)]
def c_headers(self):
return ['<numpy_compat.h>', '<gpuarray_helper.h>', '<gpuarray/types.h>']
def c_header_dirs(self):
return [gpuarray_helper_inc_dir()]
def c_code(self, node, name, inp, out, sub): #TODO: fix error msgs
x, k, n, m = inp
y, = out
fail = sub['fail']
ctx = sub['params']
typecode = pygpu.gpuarray.dtype_to_typecode(node.inputs[0].dtype)
kname = self.gpu_kernels(node, name)[0].objvar
s = """
int err;
size_t ndims = (size_t)PyGpuArray_NDIM((PyGpuArrayObject*)%(x)s);
size_t* in_dims = (size_t*)PyGpuArray_DIMS((PyGpuArrayObject*)%(x)s);
size_t l = in_dims[0];
size_t ls = std::min(l, (size_t)1024);
size_t gs = (l + ls - 1) / ls;
size_t k = ((dtype_%(k)s*)PyArray_DATA(%(k)s))[0];
size_t n = ((dtype_%(n)s*)PyArray_DATA(%(n)s))[0];
size_t m = ((dtype_%(m)s*)PyArray_DATA(%(m)s))[0];
size_t out_dims[2] = {std::max(k < 0 ? (size_t)l-k : l, n), std::max(k > 0 ? (size_t)l+k : l, m)};
size_t itemsize_x = 1;
size_t itemsize_y = 1;
ssize_t stridesX0 = 1;
ssize_t stridesY0 = 1;
ssize_t stridesY1 = 1;
if ((ndims == 2) && (in_dims[1] != 1)) {
PyErr_Format(PyExc_RuntimeError, "If the input has 2 dimensions the second dimension must be of size 1. Input shape: (%%lu, %%lu)", (unsigned long)in_dims[0], (unsigned long)in_dims[1]);
%(fail)s
}
Py_CLEAR(%(y)s);
%(y)s = pygpu_zeros(2, out_dims, %(typecode)s, GA_C_ORDER, %(ctx)s, Py_None); //theano can reuse this space, thus we have to make sure to fill it with zeros every time
if (%(y)s == NULL) {
PyErr_Format(PyExc_RuntimeError, "Failed to allocate array for the output.");
%(fail)s
}
itemsize_x = GpuArray_ITEMSIZE(&%(x)s->ga);
itemsize_y = GpuArray_ITEMSIZE(&%(y)s->ga);
stridesX0 = PyGpuArray_STRIDES(%(x)s)[0] / itemsize_x;
stridesY0 = PyGpuArray_STRIDES(%(y)s)[0] / itemsize_y;
stridesY1 = PyGpuArray_STRIDES(%(y)s)[1] / itemsize_y;
err = dalloc_call(1, &gs, &ls, 0, stridesX0, %(x)s->ga.data, %(x)s->ga.offset, stridesY0, stridesY1, %(y)s->ga.data, %(y)s->ga.offset, k, l);
if (err != GA_NO_ERROR) {
PyErr_Format(PyExc_RuntimeError, "gpuarray error: kAlloc: %%s. n%%lu, m=%%lu.", GpuKernel_error(&%(kname)s, err), (unsigned long)out_dims[0], (unsigned long)out_dims[1]);
%(fail)s;
}
""" % locals()
return s
def c_code_cache_version(self):
return (1,)
class GpuBinarySearchSorted(GpuKernelBase, Op):
"""
Searchsorted on GPU
"""
__props__ = ('context_name', 'dtype_int64')
_f16_ok = True
params_type = ParamsType(context=gpu_context_type, dtype_int64=bool_t)
def __init__(self, context_name=None, dtype_int64=False):
self.context_name = context_name
self.dtype_int64 = dtype_int64
def get_params(self, node):
return self.params_type.get_params(self, context=get_context(self.context_name), dtype_int64=self.dtype_int64)
def make_node(self, d, x):
d = as_gpuarray_variable(d, context_name=self.context_name)
x = as_gpuarray_variable(x, context_name=self.context_name)
assert d.ndim == 1
assert x.ndim == 1
broadcastable = (False,)
otype = GpuArrayType(dtype='int64' if self.dtype_int64 else 'int32', broadcastable=broadcastable, context_name=self.context_name)
return gof.Apply(self, [d, x], [otype()])
def infer_shape(self, node, in_shapes):
_, x_shape = in_shapes
return [x_shape]
def grad(self, inp, grads):
return [grad_not_implemented(self, i, inp[i]) for i in range(2)]
def gpu_kernels(self, node, name):
dtype_d = node.inputs[0].dtype
type_d = gpuarray.dtype_to_ctype(dtype_d)
dtype_x = node.inputs[1].dtype
type_x = gpuarray.dtype_to_ctype(dtype_x)
dtype_y = node.outputs[0].dtype
type_y = gpuarray.dtype_to_ctype(dtype_y)
work_d = gpuarray.dtype_to_ctype(work_dtype(dtype_d))
load_d = load_w(dtype_d)
work_x = gpuarray.dtype_to_ctype(work_dtype(dtype_x))
load_x = load_w(dtype_x)
code = """
#include "cluda.h"
KERNEL void binsearchsorted(const ga_ssize stridesD0, GLOBAL_MEM %(type_d)s *d, ga_size d_off, const ga_ssize stridesX0, GLOBAL_MEM %(type_x)s *x, ga_size x_off, const ga_ssize stridesY0, GLOBAL_MEM %(type_y)s *y, ga_size y_off, ga_size lx, ga_ssize ld) {
d = (GLOBAL_MEM %(type_d)s *)(((GLOBAL_MEM char *)d) + d_off);
x = (GLOBAL_MEM %(type_x)s *)(((GLOBAL_MEM char *)x) + x_off);
y = (GLOBAL_MEM %(type_y)s *)(((GLOBAL_MEM char *)y) + y_off);
ga_size index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < lx) {
ga_long a = 0;
ga_long b = (ga_long)(ld - 1);
%(work_d)s minval = %(load_d)s(d[a]);
%(work_d)s maxval = %(load_d)s(d[b * stridesD0]);
%(work_x)s val = %(load_x)s(x[index * stridesX0]);
if (val > maxval) {
a = (ga_long)ld;
b = (ga_long)ld;
} else if (val <= minval) {
a = 0;
b = 0;
}
while (b - a > 0) {
ga_long h = (b + a) / 2;
%(work_d)s t = %(load_d)s(d[h * stridesD0]);
if (val < t) {
b = h;
} else {
a = h + 1;
}
}
y[index * stridesY0] = b;
}
}""" % dict(type_d=type_d, type_x=type_x, type_y=type_y, work_d=work_d, load_d=load_d, work_x=work_x, load_x=load_x, name=name)
return [Kernel(
code=code, name="binsearchsorted",
params=[gpuarray.SSIZE, gpuarray.GpuArray, gpuarray.SIZE, gpuarray.SSIZE, gpuarray.GpuArray, gpuarray.SIZE, gpuarray.SSIZE, gpuarray.GpuArray, gpuarray.SIZE, gpuarray.SIZE, gpuarray.SSIZE],
flags=Kernel.get_flags(dtype_d, dtype_x, dtype_y),
objvar='k_binsearchsorted_' + name)]
def c_headers(self):
return ['<numpy_compat.h>', '<gpuarray_helper.h>', '<gpuarray/types.h>']
def c_header_dirs(self):
return [gpuarray_helper_inc_dir()]
def c_code(self, node, name, inp, out, sub): #TODO: fix error msg
d, x = inp
y, = out
fail = sub['fail']
params = sub['params']
typecode = pygpu.gpuarray.dtype_to_typecode(node.outputs[0].dtype)
kname = self.gpu_kernels(node, name)[0].objvar
s = """
int err;
size_t dimd = ((size_t*)PyGpuArray_DIMS((PyGpuArrayObject*)%(d)s))[0];
size_t dimx = ((size_t*)PyGpuArray_DIMS((PyGpuArrayObject*)%(x)s))[0];
size_t ls = 1024;
size_t gs = (dimx / 1024) + 1;
size_t out_dims[1] = {dimx};
size_t itemsize_d = 1;
size_t itemsize_x = 1;
size_t itemsize_y = 1;
ssize_t stridesD0 = 1;
ssize_t stridesX0 = 1;
ssize_t stridesY0 = 1;
if (%(y)s == NULL || %(y)s->ga.nd != 1 || %(y)s->ga.dimensions[0] != dimx) {
Py_CLEAR(%(y)s);
%(y)s = pygpu_zeros(1, out_dims, %(typecode)s, GA_C_ORDER, %(params)s->context, Py_None);
}
if (%(y)s == NULL) {
%(fail)s
}
itemsize_d = GpuArray_ITEMSIZE(&%(d)s->ga);
itemsize_x = GpuArray_ITEMSIZE(&%(x)s->ga);
itemsize_y = GpuArray_ITEMSIZE(&%(y)s->ga);
stridesD0 = PyGpuArray_STRIDES(%(d)s)[0] / itemsize_d;
stridesX0 = PyGpuArray_STRIDES(%(x)s)[0] / itemsize_x;
stridesY0 = PyGpuArray_STRIDES(%(y)s)[0] / itemsize_y;
err = binsearchsorted_call(1, &gs, &ls, 0, stridesD0, %(d)s->ga.data, %(d)s->ga.offset, stridesX0, %(x)s->ga.data, %(x)s->ga.offset, stridesY0, %(y)s->ga.data, %(y)s->ga.offset, dimx, (ssize_t)dimd);
if (err != GA_NO_ERROR) {
PyErr_Format(PyExc_RuntimeError, "gpuarray error: kExtract: %%s. n%%lu, m=%%lu.", GpuKernel_error(&%(kname)s, err), (unsigned long)dimx, (unsigned long)dimd);
%(fail)s;
}
""" % locals()
return s
def c_code_cache_version(self):
return (1,)
class GpuAdvancedSubtensor1_fast(GpuKernelBase, GpuAdvancedSubtensor1):
"""
Implement a faster version AdvancedSubtensor1 on the gpu for 2D tensors
"""
_f16_ok = True
def make_node(self, x, ilist):
ctx_name = infer_context_name(x, ilist)
x_ = as_gpuarray_variable(x, ctx_name)
ilist_ = as_gpuarray_variable(ilist, ctx_name)
if ilist_.type.dtype not in tensor.integer_dtypes:
raise TypeError('index must be integers')
if ilist_.type.ndim != 1:
raise TypeError('index must be vector')
if x_.type.ndim == 0:
raise TypeError('cannot index into a scalar')
return gof.Apply(self, [x_, ilist_], [x_.type()])
def perform(self, node, inp, out, params):
return super(GpuAdvancedSubtensor1_fast, self).perform(node, inp, out)
def c_code_cache_version(self):
return (1,)
def c_headers(self):
return ['<numpy_compat.h>', '<gpuarray_helper.h>',
'<gpuarray/types.h>']
def c_header_dirs(self):
return [gpuarray_helper_inc_dir()]
def c_code(self, node, name, inputs, outputs, sub):
if (node.inputs[0].ndim != 2):
raise NotImplementedError("This case does not have C code yet.")
return """
int err;
if (%(out)s == NULL || !GpuArray_IS_C_CONTIGUOUS(&%(out)s->ga) ||
%(out)s->ga.dimensions[0] != %(idx)s->ga.dimensions[0] ||
%(out)s->ga.nd != %(v)s->ga.nd || %(out)s->ga.dimensions[1] != %(v)s->ga.dimensions[1]) {
size_t tmp;
Py_XDECREF(%(out)s);
/* This is a dirty hack to avoid an extra alloc */
tmp = %(v)s->ga.dimensions[0];
%(v)s->ga.dimensions[0] = %(idx)s->ga.dimensions[0];
%(out)s = pygpu_empty(%(v)s->ga.nd, %(v)s->ga.dimensions, %(v)s->ga.typecode,
GA_C_ORDER, %(v)s->context, Py_None);
if (%(out)s == NULL) {
%(fail)s;
}
%(v)s->ga.dimensions[0] = tmp; // Don't remove this line
}
if (GpuArray_vector_select_fast(%(out)s, %(v)s, %(idx)s)) {
%(fail)s
}
""" % dict(v=inputs[0], idx=inputs[1], out=outputs[0], fail=sub['fail'])
def gpu_kernels(self, node, nodename):
CHARMAP = dict(int32='i', uint32='I',
int64='l', uint64='L',
float16='e', float32='f', float64='d')
dtype_in = node.inputs[0].dtype
dtype_out = node.outputs[0].dtype
dtype_idx = node.inputs[1].dtype
type_in = gpuarray.dtype_to_ctype(dtype_in)
type_out = gpuarray.dtype_to_ctype(dtype_out)
type_idx = gpuarray.dtype_to_ctype(dtype_idx)
flags = Kernel.get_flags(dtype_in, dtype_out, dtype_idx)
kname = "k_vector_select_fast"
k_var = "k_vector_select_fast_" + nodename
code = """#include "cluda.h"
KERNEL void k_vector_select_fast(const ga_size numRowsOut,
const ga_size numColsOut,
const ga_ssize stridesOut0,
const ga_ssize stridesOut1,
GLOBAL_MEM %(type_out)s *Out,
const ga_size offset_Out,
const ga_size numRowsIn,
const ga_size numColsIn,
const ga_ssize stridesIn0,
const ga_ssize stridesIn1,
GLOBAL_MEM %(type_in)s *In,
const ga_size offset_In,
const ga_size numIndices,
const ga_ssize stridesIndices,
GLOBAL_MEM %(type_idx)s *indices_arr,
const ga_size offset_indices_arr,
GLOBAL_MEM ga_int *err)
{
Out = (GLOBAL_MEM %(type_out)s *)(((GLOBAL_MEM char *)Out)+offset_Out);
In = (GLOBAL_MEM %(type_in)s *)(((GLOBAL_MEM char *)In)+offset_In);
indices_arr = (GLOBAL_MEM %(type_idx)s *)(((GLOBAL_MEM char *)indices_arr)+offset_indices_arr);
for (ga_int i = GID_0; i < numIndices; i += GDIM_0)
{
for (ga_int j = LID_0; j < numColsIn; j += LDIM_0)
{
ga_ssize in_row = indices_arr[i * stridesIndices];
if (in_row < 0)
in_row += numRowsIn;
ga_ssize out_row = i;
if (in_row < numRowsIn && in_row >= 0) {
Out[(out_row * stridesOut0) + (j * stridesOut1)] = In[(in_row * stridesIn0) + (j * stridesIn1)];
} else {
*err = 1;
}
}
}
return;
}
""" % dict(type_in=type_in, type_out=type_out, type_idx=type_idx,
tc=CHARMAP[dtype_in])
from pygpu.gpuarray import SIZE, SSIZE
params = [
SIZE, SIZE, SSIZE, SSIZE, gpuarray.GpuArray, SIZE,
SIZE, SIZE, SSIZE, SSIZE, gpuarray.GpuArray, SIZE,
SIZE, SSIZE, gpuarray.GpuArray, SIZE,
gpuarray.GpuArray]
return [Kernel(code=code, name=kname, params=params,
flags=flags, objvar=k_var)]
def c_support_code_struct(self, node, nodename):
return super(GpuAdvancedSubtensor1_fast, self).c_support_code_struct(node, nodename) + """
int GpuArray_vector_select_fast(PyGpuArrayObject* py_out,
PyGpuArrayObject* py_in,
PyGpuArrayObject* indices_arr)
{
size_t threads_per_block = std::min(PyGpuArray_DIMS(py_out)[1], (size_t)256);
size_t n_blocks = std::min(PyGpuArray_SIZE(indices_arr), (size_t)4096);
gpudata *errbuf;
int err, kerr = 0;
size_t itemsize_out = GpuArray_ITEMSIZE(&py_out->ga);
size_t itemsize_in = GpuArray_ITEMSIZE(&py_in->ga);
size_t itemsize_idx = GpuArray_ITEMSIZE(&indices_arr->ga);
if (threads_per_block > 0 && n_blocks > 0) {
err = gpudata_property(py_out->ga.data,
GA_CTX_PROP_ERRBUF, &errbuf);
if (err != GA_NO_ERROR) {
PyErr_SetString(PyExc_RuntimeError, "Can't fetch error buffer");
return 1;
}
err = k_vector_select_fast_call(
1, &n_blocks, &threads_per_block, 0,
PyGpuArray_DIMS(py_out)[0],
PyGpuArray_DIMS(py_out)[1],
PyGpuArray_STRIDES(py_out)[0] / itemsize_out,
PyGpuArray_STRIDES(py_out)[1] / itemsize_out,
py_out->ga.data,
py_out->ga.offset,
PyGpuArray_DIMS(py_in)[0],
PyGpuArray_DIMS(py_in)[1],
PyGpuArray_DIMS(py_in)[0] == 1 ? 0 : PyGpuArray_STRIDES(py_in)[0] / itemsize_in,
PyGpuArray_DIMS(py_in)[1] == 1 ? 0 : PyGpuArray_STRIDES(py_in)[1] / itemsize_in,
py_in->ga.data,
py_in->ga.offset,
PyGpuArray_DIMS(indices_arr)[0],
PyGpuArray_STRIDES(indices_arr)[0] / itemsize_idx,
indices_arr->ga.data,
indices_arr->ga.offset,
errbuf);
if (err != GA_NO_ERROR) {
PyErr_Format(PyExc_RuntimeError,
"gpuarray error: %(k_var)s: %%s.",
GpuKernel_error(&%(k_var)s, err));
return 1;
}
err = gpudata_read(&kerr, errbuf, 0, sizeof(int));
if (err != GA_NO_ERROR) {
PyErr_SetString(PyExc_RuntimeError, "Can't read error buffer");
return 1;
}
if (kerr != 0) {
PyErr_SetString(PyExc_IndexError, "Index out of bounds");
kerr = 0;
gpudata_write(errbuf, 0, &kerr, sizeof(int));
return 1;
}
}
return 0;
}
""" % dict(k_var="k_vector_select_fast_" + nodename)