forked from hidasib/GRU4Rec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
275 lines (261 loc) · 14.2 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 26 17:27:26 2015
@author: Balázs Hidasi
"""
import numpy as np
import pandas as pd
from collections import OrderedDict
import theano
from theano import tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
def evaluate_gpu(gru, test_data, items=None, session_key='SessionId', item_key='ItemId', time_key='Time', cut_off=20, batch_size=100, mode='standard'):
'''
Evaluates the GRU4Rec network quickly wrt. recommendation accuracy measured by recall@N and MRR@N.
Parameters
--------
pr : gru4rec.GRU4Rec
A trained instance of the GRU4Rec network.
test_data : pandas.DataFrame
Test data. It contains the transactions of the test set.It has one column for session IDs, one for item IDs and one for the timestamp of the events (unix timestamps).
It must have a header. Column names are arbitrary, but must correspond to the keys you use in this function.
items : 1D list or None
The list of item ID that you want to compare the score of the relevant item to. If None, all items of the training set are used. Default value is None.
session_key : string
Header of the session ID column in the input file (default: 'SessionId')
item_key : string
Header of the item ID column in the input file (default: 'ItemId')
time_key : string
Header of the timestamp column in the input file (default: 'Time')
cut-off : int
Cut-off value (i.e. the length of the recommendation list; N for recall@N and MRR@N). Defauld value is 20.
batch_size : int
Number of events bundled into a batch during evaluation. Speeds up evaluation. If it is set high, the memory consumption increases. Default value is 100.
mode : 'standard', 'conservative', 'median', 'tiebreaking'
Sets how ties (the exact same prediction scores) should be handled. Note that ties produced by GRU4Rec are very often a sign of saturation or some kind of error. 'standard' -> the positive item is ranked above all negatives with the same score; 'conservative' -> the positive item is ranked below all the negative items with the same score; 'median' -> assume that half of the negative items with the same score as the positive item are ranked before and the other half is ranked after, somewhat slower than the previous two; 'tiebreaking' -> add a small random value to every predicted score to break up ties, slowest of the modes. Default: 'standard'
Returns
--------
out : tuple
(Recall@N, MRR@N)
'''
if gru.error_during_train: raise Exception
print('Measuring Recall@{} and MRR@{}'.format(cut_off, cut_off))
srng = RandomStreams()
X = T.ivector()
Y = T.ivector()
M = T.iscalar()
C = []
yhat, H, updatesH = gru.symbolic_predict(X, Y, M, items, batch_size)
if mode == 'tiebreaking': yhat += srng.uniform(size=yhat.shape) * 1e-10
if items is None:
targets = T.diag(yhat.T[Y])
others = yhat.T
else:
targets = T.diag(yhat.T[:M])
others = yhat.T[M:]
if mode == 'standard': ranks = (others > targets).sum(axis=0) + 1
elif mode == 'conservative': ranks = (others >= targets).sum(axis=0)
elif mode == 'median': ranks = (others > targets).sum(axis=0) + 0.5*((others == targets).sum(axis=0) - 1) + 1
elif mode == 'tiebreaking': ranks = (others > targets).sum(axis=0) + 1
else: raise NotImplementedError
REC = (ranks <= cut_off).sum()
MRR = ((ranks <= cut_off) / ranks).sum()
evaluate = theano.function(inputs=[X, Y, M] + C, outputs=[REC, MRR], updates=updatesH, allow_input_downcast=True, on_unused_input='ignore')
test_data = pd.merge(test_data, pd.DataFrame({'ItemIdx':gru.itemidmap.values, item_key:gru.itemidmap.index}), on=item_key, how='inner')
test_data.sort_values([session_key, time_key, item_key], inplace=True)
test_data_items = test_data.ItemIdx.values
if items is not None:
item_idxs = gru.itemidmap[items]
recall, mrr, n = 0, 0, 0
iters = np.arange(batch_size)
maxiter = iters.max()
offset_sessions = np.zeros(test_data[session_key].nunique()+1, dtype=np.int32)
offset_sessions[1:] = test_data.groupby(session_key).size().cumsum()
start = offset_sessions[iters]
end = offset_sessions[iters+1]
finished = False
cidxs = []
while not finished:
minlen = (end-start).min()
out_idx = test_data_items[start]
for i in range(minlen-1):
in_idx = out_idx
out_idx = test_data_items[start+i+1]
if items is not None:
y = np.hstack([out_idx, item_idxs])
else:
y = out_idx
rec, m = evaluate(in_idx, y, len(iters), *cidxs)
recall += rec
mrr += m
n += len(iters)
start = start+minlen-1
finished_mask = (end-start<=1)
n_finished = finished_mask.sum()
iters[finished_mask] = maxiter + np.arange(1,n_finished+1)
maxiter += n_finished
valid_mask = (iters < len(offset_sessions)-1)
n_valid = valid_mask.sum()
if n_valid == 0:
finished = True
break
mask = finished_mask & valid_mask
sessions = iters[mask]
start[mask] = offset_sessions[sessions]
end[mask] = offset_sessions[sessions+1]
iters = iters[valid_mask]
start = start[valid_mask]
end = end[valid_mask]
if valid_mask.any():
for i in range(len(H)):
tmp = H[i].get_value(borrow=True)
tmp[mask] = 0
tmp = tmp[valid_mask]
H[i].set_value(tmp, borrow=True)
return recall/n, mrr/n
def evaluate_sessions_batch(pr, test_data, items=None, cut_off=20, batch_size=100, mode='standard', session_key='SessionId', item_key='ItemId', time_key='Time'):
'''
Legacy (slow) method for evaluating the GRU4Rec network wrt. recommendation accuracy measured by recall@N and MRR@N.
Parameters
--------
pr : gru4rec.GRU4Rec
A trained instance of the GRU4Rec network.
test_data : pandas.DataFrame
Test data. It contains the transactions of the test set.It has one column for session IDs, one for item IDs and one for the timestamp of the events (unix timestamps).
It must have a header. Column names are arbitrary, but must correspond to the keys you use in this function.
items : 1D list or None
The list of item ID that you want to compare the score of the relevant item to. If None, all items of the training set are used. Default value is None.
cut-off : int
Cut-off value (i.e. the length of the recommendation list; N for recall@N and MRR@N). Defauld value is 20.
batch_size : int
Number of events bundled into a batch during evaluation. Speeds up evaluation. If it is set high, the memory consumption increases. Default value is 100.
mode : 'standard', 'conservative', 'median', 'tiebreaking'
Sets how ties (the exact same prediction scores) should be handled. Note that ties produced by GRU4Rec are very often a sign of saturation or some kind of error. 'standard' -> the positive item is ranked above all negatives with the same score; 'conservative' -> the positive item is ranked below all the negative items with the same score; 'median' -> assume that half of the negative items with the same score as the positive item are ranked before and the other half is ranked after, somewhat slower than the previous two; 'tiebreaking' -> add a small random value to every predicted score to break up ties, slowest of the modes. Default: 'standard'
session_key : string
Header of the session ID column in the input file (default: 'SessionId')
item_key : string
Header of the item ID column in the input file (default: 'ItemId')
time_key : string
Header of the timestamp column in the input file (default: 'Time')
Returns
--------
out : tuple
(Recall@N, MRR@N)
'''
print('Measuring Recall@{} and MRR@{}'.format(cut_off, cut_off))
test_data = pd.merge(test_data, pd.DataFrame({'ItemIdx':pr.itemidmap.values, item_key:pr.itemidmap.index}), on=item_key, how='inner')
test_data.sort_values([session_key, time_key, item_key], inplace=True)
offset_sessions = np.zeros(test_data[session_key].nunique()+1, dtype=np.int32)
offset_sessions[1:] = test_data.groupby(session_key).size().cumsum()
evalutation_point_count = 0
mrr, recall = 0.0, 0.0
if len(offset_sessions) - 1 < batch_size:
batch_size = len(offset_sessions) - 1
iters = np.arange(batch_size).astype(np.int32)
#pos = np.zeros(min(batch_size, len(session_idx_arr))).astype(np.int32)
maxiter = iters.max()
start = offset_sessions[iters]
end = offset_sessions[iters+1]
in_idx = np.zeros(batch_size, dtype=np.int32)
sampled_items = (items is not None)
while True:
valid_mask = iters >= 0
if valid_mask.sum() == 0:
break
start_valid = start[valid_mask]
minlen = (end[valid_mask]-start_valid).min()
in_idx[valid_mask] = test_data[item_key].values[start_valid]
for i in range(minlen-1):
out_idx = test_data[item_key].values[start_valid+i+1]
if sampled_items:
uniq_out = np.unique(np.array(out_idx, dtype=np.int32))
preds = pr.predict_next_batch(iters, in_idx, np.hstack([items, uniq_out[~np.in1d(uniq_out,items)]]), batch_size)
else:
preds = pr.predict_next_batch(iters, in_idx, None, batch_size) #TODO: Handling sampling?
preds.fillna(0, inplace=True)
in_idx[valid_mask] = out_idx
if mode == 'tiebreaking':
preds += 1e-10 * np.random.rand(*preds.values.shape)
if sampled_items:
others = preds.ix[items].values.T[valid_mask].T
targets = np.diag(preds.ix[in_idx].values)[valid_mask]
if mode == 'standard': ranks = (others > targets).sum(axis=0) + 1
elif mode == 'conservative': ranks = (others >= targets).sum(axis=0)
elif mode == 'median': ranks = (others > targets).sum(axis=0) + 0.5*((others == targets).sum(axis=0) - 1) + 1
elif mode == 'tiebreaking': ranks = (others > targets).sum(axis=0) + 1
else: raise NotImplementedError
else:
if mode == 'standard': ranks = (preds.values.T[valid_mask].T > np.diag(preds.ix[in_idx].values)[valid_mask]).sum(axis=0) + 1
elif mode == 'conservative': ranks = (preds.values.T[valid_mask].T >= np.diag(preds.ix[in_idx].values)[valid_mask]).sum(axis=0)
elif mode == 'median': ranks = (preds.values.T[valid_mask].T > np.diag(preds.ix[in_idx].values)[valid_mask]).sum(axis=0) + 0.5*((preds.values.T[valid_mask].T == np.diag(preds.ix[in_idx].values)[valid_mask]).sum(axis=0) - 1) + 1
elif mode == 'tiebreaking': ranks = (preds.values.T[valid_mask].T > np.diag(preds.ix[in_idx].values)[valid_mask]).sum(axis=0) + 1
else: raise NotImplementedError
rank_ok = ranks <= cut_off
recall += rank_ok.sum()
mrr += ((1.0 / ranks) * (rank_ok)).sum()
evalutation_point_count += len(ranks)
#pos += 1
start = start+minlen-1
mask = np.arange(len(iters))[(valid_mask) & (end-start<=1)]
for idx in mask:
maxiter += 1
if maxiter >= len(offset_sessions)-1:
iters[idx] = -1
else:
#pos[idx] = 0
iters[idx] = maxiter
start[idx] = offset_sessions[maxiter]
end[idx] = offset_sessions[maxiter+1]
return recall/evalutation_point_count, mrr/evalutation_point_count
def evaluate_sessions(pr, test_data, train_data, items=None, cut_off=20, session_key='SessionId', item_key='ItemId', time_key='Time'):
'''
Evaluates the baselines wrt. recommendation accuracy measured by recall@N and MRR@N. Has no batch evaluation capabilities. Breaks up ties.
Parameters
--------
pr : baseline predictor
A trained instance of a baseline predictor.
test_data : pandas.DataFrame
Test data. It contains the transactions of the test set.It has one column for session IDs, one for item IDs and one for the timestamp of the events (unix timestamps).
It must have a header. Column names are arbitrary, but must correspond to the keys you use in this function.
train_data : pandas.DataFrame
Training data. Only required for selecting the set of item IDs of the training set.
items : 1D list or None
The list of item ID that you want to compare the score of the relevant item to. If None, all items of the training set are used. Default value is None.
cut-off : int
Cut-off value (i.e. the length of the recommendation list; N for recall@N and MRR@N). Defauld value is 20.
session_key : string
Header of the session ID column in the input file (default: 'SessionId')
item_key : string
Header of the item ID column in the input file (default: 'ItemId')
time_key : string
Header of the timestamp column in the input file (default: 'Time')
Returns
--------
out : tuple
(Recall@N, MRR@N)
'''
test_data.sort_values([session_key, time_key], inplace=True)
items_to_predict = train_data[item_key].unique()
evalutation_point_count = 0
prev_iid, prev_sid = -1, -1
mrr, recall = 0.0, 0.0
for i in range(len(test_data)):
sid = test_data[session_key].values[i]
iid = test_data[item_key].values[i]
if prev_sid != sid:
prev_sid = sid
else:
if items is not None:
if np.in1d(iid, items): items_to_predict = items
else: items_to_predict = np.hstack(([iid], items))
preds = pr.predict_next(sid, prev_iid, items_to_predict)
preds[np.isnan(preds)] = 0
preds += 1e-8 * np.random.rand(len(preds)) #Breaking up ties
rank = (preds > preds[iid]).sum()+1
assert rank > 0
if rank < cut_off:
recall += 1
mrr += 1.0/rank
evalutation_point_count += 1
prev_iid = iid
return recall/evalutation_point_count, mrr/evalutation_point_count