-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
36 lines (29 loc) · 1.31 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torchaudio
from torch.utils.data import Dataset
# define dataset for IEMOCAP audio emotion classification
class IEMOCAP_Audio_Dataset(Dataset):
def __init__(self, audios, labels, processor, max_length=160000):
self.audios = audios
self.labels = torch.tensor(labels)
self.processor = processor
self.max_length = max_length
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
audio_path = self.audios[idx]
waveform, _ = torchaudio.load(audio_path, normalize=True)
inputs = {"input_values": self.processor(waveform.squeeze().numpy(), return_tensors="pt", max_length=self.max_length, sampling_rate=16000).input_values[0]}
inputs["label"] = self.labels[idx]
return inputs
# define dataset for IEMOCAP text emotion classification
class IEMOCAP_Text_Dataset(Dataset):
def __init__(self, texts, labels, tokenizer, max_length=128):
self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=max_length)
self.labels = torch.tensor(labels)
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = self.labels[idx]
return item