forked from conor42/fast-lzma2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlzma2_dec.c
1381 lines (1222 loc) · 41.4 KB
/
lzma2_dec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* lzma2_dec.c -- LZMA2 Decoder
Based upon LzmaDec.c 2018-02-28 : Igor Pavlov : Public domain
Modified for FL2 by Conor McCarthy */
#include <stdlib.h>
#include "fl2_errors.h"
#include "fl2_internal.h"
#include "lzma2_dec.h"
#include "platform.h"
#ifdef HAVE_SMALL
# define LZMA_SIZE_OPT
#endif
#define kNumTopBits 24
#define kTopValue ((U32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define RC_INIT_SIZE 5
#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
#define UPDATE_0(p) range = bound; *(p) = (LZMA2_prob)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (LZMA2_prob)(ttt - (ttt >> kNumMoveBits));
#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
{ UPDATE_0(p); i = (i + i); A0; } else \
{ UPDATE_1(p); i = (i + i) + 1; A1; }
#if defined __x86_64__s || defined _M_X64
#define USE_CMOV
#define PREP_BIT(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt
#define UPDATE_PREP_0 U32 r0 = bound; unsigned p0 = (ttt + ((kBitModelTotal - ttt) >> kNumMoveBits))
#define UPDATE_PREP_1 U32 r1 = range - bound; unsigned p1 = (ttt - (ttt >> kNumMoveBits))
#define UPDATE_COND(p) range=(code < bound) ? r0 : r1; *p = (LZMA2_prob)((code < bound) ? p0 : p1)
#define UPDATE_CODE code = code - ((code < bound) ? 0 : bound)
#define TREE_GET_BIT(probs, i) { LZMA2_prob *pp = (probs)+(i); PREP_BIT(pp); \
UPDATE_PREP_0; unsigned i0 = (i + i); \
UPDATE_PREP_1; unsigned i1 = (i + i) + 1; \
UPDATE_COND(pp); \
i = (code < bound) ? i0 : i1; \
UPDATE_CODE; \
}
#define REV_BIT_VAR(probs, i, m) { LZMA2_prob *pp = (probs)+(i); PREP_BIT(pp); \
UPDATE_PREP_0; U32 i0 = i + m; U32 m2 = m + m; \
UPDATE_PREP_1; U32 i1 = i + m2; \
UPDATE_COND(pp); \
i = (code < bound) ? i0 : i1; \
m = m2; \
UPDATE_CODE; \
}
#define REV_BIT_CONST(probs, i, m) { LZMA2_prob *pp = (probs)+(i); PREP_BIT(pp); \
UPDATE_PREP_0; \
UPDATE_PREP_1; \
UPDATE_COND(pp); \
i += m + (code < bound ? 0 : m); \
UPDATE_CODE; \
}
#define REV_BIT_LAST(probs, i, m) { LZMA2_prob *pp = (probs)+(i); PREP_BIT(pp); \
UPDATE_PREP_0; \
UPDATE_PREP_1; \
UPDATE_COND(pp); \
i -= code < bound ? m : 0; \
UPDATE_CODE; \
}
#define MATCHED_LITER_DEC \
match_byte += match_byte; \
bit = offs; \
offs &= match_byte; \
prob_lit = prob + (offs + bit + symbol); \
PREP_BIT(prob_lit); \
{ UPDATE_PREP_0; unsigned i0 = (symbol + symbol); \
UPDATE_PREP_1; unsigned i1 = (symbol + symbol) + 1; \
UPDATE_COND(prob_lit); \
symbol = (code < bound) ? i0 : i1; \
offs = (code < bound) ? offs ^ bit : offs; \
UPDATE_CODE; }
#else
#define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
{ UPDATE_0(p + i); A0; } else \
{ UPDATE_1(p + i); A1; }
#define REV_BIT_VAR( p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m; , i += m * 2; )
#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m , ; )
#define MATCHED_LITER_DEC \
match_byte += match_byte; \
bit = offs; \
offs &= match_byte; \
prob_lit = prob + (offs + bit + symbol); \
GET_BIT2(prob_lit, symbol, offs ^= bit; , ;)
#endif
#define TREE_DECODE(probs, limit, i) \
{ i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
#ifdef LZMA_SIZE_OPT
#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
#else
#define TREE_6_DECODE(probs, i) \
{ i = 1; \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
i -= 0x40; }
#endif
#define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
#define NORMALIZE_CHECK if (range < kTopValue) { return 0; }
#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
#define UPDATE_0_CHECK range = bound;
#define UPDATE_1_CHECK range -= bound; code -= bound;
#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
{ UPDATE_0_CHECK; i = (i + i); A0; } else \
{ UPDATE_1_CHECK; i = (i + i) + 1; A1; }
#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
#define TREE_DECODE_CHECK(probs, limit, i) \
{ i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
{ UPDATE_0_CHECK; i += m; m += m; } else \
{ UPDATE_1_CHECK; m += m; i += m; }
/*
00000000 - EOS
00000001 U U - Uncompressed Reset Dic
00000010 U U - Uncompressed No Reset
100uuuuu U U P P - LZMA no reset
101uuuuu U U P P - LZMA reset state
110uuuuu U U P P S - LZMA reset state + new prop
111uuuuu U U P P S - LZMA reset state + new prop + reset dic
u, U - Unpack Size
P - Pack Size
S - Props
*/
#define LZMA2_CONTROL_LZMA (1 << 7)
#define LZMA2_CONTROL_COPY_NO_RESET 2
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_CONTROL_EOF 0
#define LZMA2_IS_UNCOMPRESSED_STATE(control) ((control & LZMA2_CONTROL_LZMA) == 0)
#define LZMA2_GET_LZMA_MODE(control) ((control >> 5) & 3)
#define LZMA2_IS_THERE_PROP(mode) ((mode) >= 2)
#ifdef SHOW_DEBUG_INFO
#define PRF(x) x
#else
#define PRF(x)
#endif
typedef enum
{
LZMA2_STATE_CONTROL,
LZMA2_STATE_DATA,
LZMA2_STATE_FINISHED,
LZMA2_STATE_ERROR
} LZMA2_state;
#define LZMA_DIC_MIN (1 << 12)
static BYTE LZMA_tryDummy(const LZMA2_DCtx *const p)
{
const LZMA2_prob *probs = GET_PROBS;
unsigned state = p->state;
U32 range = p->range;
U32 code = p->code;
const LZMA2_prob *prob;
U32 bound;
unsigned ttt;
unsigned pos_state = CALC_POS_STATE(p->processed_pos, (1 << p->prop.pb) - 1);
prob = probs + IsMatch + COMBINED_PS_STATE;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK
prob = probs + Literal;
if (p->check_dic_size != 0 || p->processed_pos != 0)
prob += ((U32)kLzmaLitSize *
((((p->processed_pos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
(p->dic[(p->dic_pos == 0 ? p->dic_buf_size : p->dic_pos) - 1] >> (8 - p->prop.lc))));
if (state < kNumLitStates)
{
unsigned symbol = 1;
do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
}
else
{
unsigned match_byte = p->dic[p->dic_pos - p->reps[0] +
(p->dic_pos < p->reps[0] ? p->dic_buf_size : 0)];
unsigned offs = 0x100;
unsigned symbol = 1;
do
{
unsigned bit;
const LZMA2_prob *prob_lit;
match_byte += match_byte;
bit = offs;
offs &= match_byte;
prob_lit = prob + (offs + bit + symbol);
GET_BIT2_CHECK(prob_lit, symbol, offs ^= bit; , ; )
} while (symbol < 0x100);
}
}
else
{
unsigned len;
UPDATE_1_CHECK;
prob = probs + IsRep + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
state = 0;
prob = probs + LenCoder;
}
else
{
UPDATE_1_CHECK;
prob = probs + IsRepG0 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
prob = probs + IsRep0Long + COMBINED_PS_STATE;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
NORMALIZE_CHECK;
return 1;
}
else
{
UPDATE_1_CHECK;
}
}
else
{
UPDATE_1_CHECK;
prob = probs + IsRepG1 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
}
else
{
UPDATE_1_CHECK;
prob = probs + IsRepG2 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
}
else
{
UPDATE_1_CHECK;
}
}
}
state = kNumStates;
prob = probs + RepLenCoder;
}
{
unsigned limit, offset;
const LZMA2_prob *prob_len = prob + LenChoice;
IF_BIT_0_CHECK(prob_len)
{
UPDATE_0_CHECK;
prob_len = prob + LenLow + GET_LEN_STATE;
offset = 0;
limit = 1 << kLenNumLowBits;
}
else
{
UPDATE_1_CHECK;
prob_len = prob + LenChoice2;
IF_BIT_0_CHECK(prob_len)
{
UPDATE_0_CHECK;
prob_len = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
offset = kLenNumLowSymbols;
limit = 1 << kLenNumLowBits;
}
else
{
UPDATE_1_CHECK;
prob_len = prob + LenHigh;
offset = kLenNumLowSymbols * 2;
limit = 1 << kLenNumHighBits;
}
}
TREE_DECODE_CHECK(prob_len, limit, len);
len += offset;
}
if (state < 4)
{
unsigned pos_slot;
prob = probs + PosSlot +
((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits);
TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, pos_slot);
if (pos_slot >= kStartPosModelIndex)
{
unsigned num_direct_bits = ((pos_slot >> 1) - 1);
if (pos_slot < kEndPosModelIndex)
{
prob = probs + SpecPos + ((2 | (pos_slot & 1)) << num_direct_bits);
}
else
{
num_direct_bits -= kNumAlignBits;
do
{
NORMALIZE_CHECK;
range >>= 1;
code -= range & (((code - range) >> 31) - 1);
/* if (code >= range) code -= range; */
} while (--num_direct_bits != 0);
prob = probs + Align;
num_direct_bits = kNumAlignBits;
}
{
unsigned i = 1;
unsigned m = 1;
do
{
REV_BIT_CHECK(prob, i, m);
} while (--num_direct_bits != 0);
}
}
}
}
NORMALIZE_CHECK;
return 1;
}
/* First LZMA-symbol is always decoded.
And it decodes new LZMA-symbols while (buf < buf_limit), but "buf" is without last normalization
Out:
Result:
0 - OK
1 - Error
*/
#ifdef LZMA2_DEC_OPT
int LZMA_decodeReal_3(LZMA2_DCtx *p, size_t limit, const BYTE *buf_limit);
#else
static int LZMA_decodeReal_3(LZMA2_DCtx *p, size_t limit, const BYTE *buf_limit)
{
LZMA2_prob *const probs = GET_PROBS;
unsigned state = p->state;
U32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
unsigned const pb_mask = ((unsigned)1 << (p->prop.pb)) - 1;
unsigned const lc = p->prop.lc;
unsigned const lp_mask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
BYTE *const dic = p->dic;
size_t const dic_buf_size = p->dic_buf_size;
size_t dic_pos = p->dic_pos;
U32 processed_pos = p->processed_pos;
U32 const check_dic_size = p->check_dic_size;
unsigned len = 0;
const BYTE *buf = p->buf;
U32 range = p->range;
U32 code = p->code;
do
{
LZMA2_prob *prob;
U32 bound;
unsigned ttt;
unsigned pos_state = CALC_POS_STATE(processed_pos, pb_mask);
prob = probs + IsMatch + COMBINED_PS_STATE;
IF_BIT_0(prob)
{
unsigned symbol;
UPDATE_0(prob);
prob = probs + Literal;
if (processed_pos != 0 || check_dic_size != 0)
prob += (U32)3 * ((((processed_pos << 8) + dic[(dic_pos == 0 ? dic_buf_size : dic_pos) - 1]) & lp_mask) << lc);
processed_pos++;
if (state < kNumLitStates)
{
state -= (state < 4) ? state : 3;
symbol = 1;
#ifdef LZMA_SIZE_OPT
do { NORMAL_LITER_DEC } while (symbol < 0x100);
#else
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
#endif
}
else
{
unsigned match_byte = dic[dic_pos - rep0 + (dic_pos < rep0 ? dic_buf_size : 0)];
unsigned offs = 0x100;
state -= (state < 10) ? 3 : 6;
symbol = 1;
#ifdef LZMA_SIZE_OPT
do
{
unsigned bit;
LZMA2_prob *prob_lit;
MATCHED_LITER_DEC
} while (symbol < 0x100);
#else
{
unsigned bit;
LZMA2_prob *prob_lit;
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
}
#endif
}
dic[dic_pos++] = (BYTE)symbol;
continue;
}
UPDATE_1(prob);
prob = probs + IsRep + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
state += kNumStates;
prob = probs + LenCoder;
}
else
{
UPDATE_1(prob);
/*
that case was checked before with kBadRepCode:
if (check_dic_size == 0 && processed_pos == 0)
return 1;
*/
prob = probs + IsRepG0 + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
prob = probs + IsRep0Long + COMBINED_PS_STATE;
IF_BIT_0(prob)
{
UPDATE_0(prob);
dic[dic_pos] = dic[dic_pos - rep0 + (dic_pos < rep0 ? dic_buf_size : 0)];
dic_pos++;
processed_pos++;
state = state < kNumLitStates ? 9 : 11;
continue;
}
UPDATE_1(prob);
}
else
{
U32 distance;
UPDATE_1(prob);
prob = probs + IsRepG1 + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
distance = rep1;
}
else
{
UPDATE_1(prob);
prob = probs + IsRepG2 + state;
#ifdef USE_CMOV
PREP_BIT(prob);
UPDATE_PREP_0;
UPDATE_PREP_1;
UPDATE_COND(prob);
distance = code < bound ? rep2 : rep3;
rep3 = code < bound ? rep3 : rep2;
UPDATE_CODE;
#else
IF_BIT_0(prob)
{
UPDATE_0(prob);
distance = rep2;
}
else
{
UPDATE_1(prob);
distance = rep3;
rep3 = rep2;
}
#endif
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
state = state < kNumLitStates ? 8 : 11;
prob = probs + RepLenCoder;
}
#ifdef LZMA_SIZE_OPT
unsigned lim, offset;
LZMA2_prob *prob_len = prob + LenChoice;
IF_BIT_0(prob_len)
{
UPDATE_0(prob_len);
prob_len = prob + LenLow + GET_LEN_STATE;
offset = 0;
lim = (1 << kLenNumLowBits);
}
else
{
UPDATE_1(prob_len);
prob_len = prob + LenChoice2;
IF_BIT_0(prob_len)
{
UPDATE_0(prob_len);
prob_len = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
offset = kLenNumLowSymbols;
lim = (1 << kLenNumLowBits);
}
else
{
UPDATE_1(prob_len);
prob_len = prob + LenHigh;
offset = kLenNumLowSymbols * 2;
lim = (1 << kLenNumHighBits);
}
}
TREE_DECODE(prob_len, lim, len);
len += offset;
#else
LZMA2_prob *prob_len = prob + LenChoice;
IF_BIT_0(prob_len)
{
UPDATE_0(prob_len);
prob_len = prob + LenLow + GET_LEN_STATE;
len = 1;
TREE_GET_BIT(prob_len, len);
TREE_GET_BIT(prob_len, len);
TREE_GET_BIT(prob_len, len);
len -= 8;
}
else
{
UPDATE_1(prob_len);
prob_len = prob + LenChoice2;
IF_BIT_0(prob_len)
{
UPDATE_0(prob_len);
prob_len = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
len = 1;
TREE_GET_BIT(prob_len, len);
TREE_GET_BIT(prob_len, len);
TREE_GET_BIT(prob_len, len);
}
else
{
UPDATE_1(prob_len);
prob_len = prob + LenHigh;
TREE_DECODE(prob_len, (1 << kLenNumHighBits), len);
len += kLenNumLowSymbols * 2;
}
}
#endif
if (state >= kNumStates)
{
U32 distance;
prob = probs + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
TREE_6_DECODE(prob, distance);
if (distance >= kStartPosModelIndex)
{
unsigned pos_slot = (unsigned)distance;
unsigned num_direct_bits = (unsigned)(((distance >> 1) - 1));
distance = (2 | (distance & 1));
if (pos_slot < kEndPosModelIndex)
{
distance <<= num_direct_bits;
prob = probs + SpecPos;
{
U32 m = 1;
distance++;
do
{
REV_BIT_VAR(prob, distance, m);
} while (--num_direct_bits);
distance -= m;
}
}
else
{
num_direct_bits -= kNumAlignBits;
do
{
NORMALIZE
range >>= 1;
U32 t;
code -= range;
t = (0 - ((U32)code >> 31));
distance = (distance << 1) + (t + 1);
code += range & t;
} while (--num_direct_bits != 0);
prob = probs + Align;
distance <<= kNumAlignBits;
{
U32 i = 1;
REV_BIT_CONST(prob, i, 1);
REV_BIT_CONST(prob, i, 2);
REV_BIT_CONST(prob, i, 4);
REV_BIT_LAST(prob, i, 8);
distance |= i;
}
}
}
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
rep0 = distance + 1;
if (distance >= (check_dic_size == 0 ? processed_pos : check_dic_size))
{
p->dic_pos = dic_pos;
return 1;
}
state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
}
len += kMatchMinLen;
size_t rem = limit - dic_pos;
if (rem == 0)
{
p->dic_pos = dic_pos;
return 1;
}
unsigned cur_len = ((rem < len) ? (unsigned)rem : len);
size_t pos = dic_pos - rep0 + (dic_pos < rep0 ? dic_buf_size : 0);
processed_pos += cur_len;
len -= cur_len;
if (cur_len <= dic_buf_size - pos)
{
BYTE *dest = dic + dic_pos;
ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dic_pos;
const BYTE *end = dest + cur_len;
dic_pos += cur_len;
do
*(dest) = (BYTE)*(dest + src);
while (++dest != end);
}
else
{
do
{
dic[dic_pos++] = dic[pos];
if (++pos == dic_buf_size)
pos = 0;
} while (--cur_len != 0);
}
} while (dic_pos < limit && buf < buf_limit);
NORMALIZE;
p->buf = buf;
p->range = range;
p->code = code;
p->remain_len = len;
p->dic_pos = dic_pos;
p->processed_pos = processed_pos;
p->reps[0] = rep0;
p->reps[1] = rep1;
p->reps[2] = rep2;
p->reps[3] = rep3;
p->state = state;
return 0;
}
#endif
static void LZMA_writeRem(LZMA2_DCtx *const p, size_t const limit)
{
if (p->remain_len != 0 && p->remain_len < kMatchSpecLenStart)
{
BYTE *const dic = p->dic;
size_t dic_pos = p->dic_pos;
size_t const dic_buf_size = p->dic_buf_size;
unsigned len = p->remain_len;
size_t const rep0 = p->reps[0];
size_t const rem = limit - dic_pos;
if (rem < len)
len = (unsigned)(rem);
if (p->check_dic_size == 0 && p->prop.dic_size - p->processed_pos <= len)
p->check_dic_size = p->prop.dic_size;
p->processed_pos += len;
p->remain_len -= len;
while (len != 0)
{
len--;
dic[dic_pos] = dic[dic_pos - rep0 + (dic_pos < rep0 ? dic_buf_size : 0)];
dic_pos++;
}
p->dic_pos = dic_pos;
}
}
#define kRange0 0xFFFFFFFF
#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
#if kBadRepCode != (0xC0000000 - 0x400)
#error Stop_Compiling_Bad_LZMA_Check
#endif
static size_t LZMA_decodeReal2(LZMA2_DCtx *const p, size_t const limit, const BYTE *const buf_limit)
{
if (p->buf == buf_limit && !LZMA_tryDummy(p))
return FL2_ERROR(corruption_detected);
do
{
size_t limit2 = limit;
if (p->check_dic_size == 0)
{
U32 const rem = p->prop.dic_size - p->processed_pos;
if (limit - p->dic_pos > rem)
limit2 = p->dic_pos + rem;
if (p->processed_pos == 0)
if (p->code >= kBadRepCode)
return FL2_ERROR(corruption_detected);
}
do {
if (LZMA_decodeReal_3(p, limit2, buf_limit) != 0)
return FL2_ERROR(corruption_detected);
} while (p->dic_pos < limit2 && p->buf == buf_limit && LZMA_tryDummy(p));
if (p->check_dic_size == 0 && p->processed_pos >= p->prop.dic_size)
p->check_dic_size = p->prop.dic_size;
LZMA_writeRem(p, limit);
} while (p->dic_pos < limit && p->buf < buf_limit && p->remain_len < kMatchSpecLenStart);
if (p->remain_len > kMatchSpecLenStart)
p->remain_len = kMatchSpecLenStart;
return FL2_error_no_error;
}
static void LZMA_initDicAndState(LZMA2_DCtx *const p, BYTE const init_dic, BYTE const init_state)
{
p->need_flush = 1;
p->remain_len = 0;
if (init_dic)
{
p->processed_pos = 0;
p->check_dic_size = 0;
p->need_init_state = 1;
}
if (init_state)
p->need_init_state = 1;
}
static void LZMA_init(LZMA2_DCtx *const p)
{
p->dic_pos = 0;
LZMA_initDicAndState(p, 1, 1);
}
static void LZMA_initStateReal(LZMA2_DCtx *const p)
{
size_t const num_probs = LzmaProps_GetNumProbs(&p->prop);
LZMA2_prob *probs = p->probs;
for (size_t i = 0; i < num_probs; i++)
probs[i] = kBitModelTotal >> 1;
p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
p->state = 0;
p->need_init_state = 0;
}
static size_t LZMA_decodeToDic(LZMA2_DCtx *const p, size_t const dic_limit, const BYTE *src, size_t *const src_len,
LZMA2_finishMode finish_mode)
{
size_t in_size = *src_len;
(*src_len) = 0;
LZMA_writeRem(p, dic_limit);
if (p->need_flush)
{
if (in_size < RC_INIT_SIZE)
{
return LZMA_STATUS_NEEDS_MORE_INPUT;
}
if (src[0] != 0)
return FL2_ERROR(corruption_detected);
p->code =
((U32)src[1] << 24)
| ((U32)src[2] << 16)
| ((U32)src[3] << 8)
| ((U32)src[4]);
src += RC_INIT_SIZE;
(*src_len) += RC_INIT_SIZE;
in_size -= RC_INIT_SIZE;
p->range = 0xFFFFFFFF;
p->need_flush = 0;
}
while (1) {
if (p->dic_pos >= dic_limit)
{
if (p->remain_len == 0 && p->code == 0) {
return LZMA_STATUS_FINISHED;
}
return LZMA_STATUS_NOT_FINISHED;
}
if (p->need_init_state)
LZMA_initStateReal(p);
const BYTE *buf_limit;
if (finish_mode == LZMA_FINISH_END) {
buf_limit = src + in_size;
}
else {
if (in_size <= LZMA_REQUIRED_INPUT_MAX) {
return LZMA_STATUS_NEEDS_MORE_INPUT;
}
buf_limit = src + in_size - LZMA_REQUIRED_INPUT_MAX;
}
p->buf = src;
CHECK_F(LZMA_decodeReal2(p, dic_limit, buf_limit));
size_t const processed = (size_t)(p->buf - src);
(*src_len) += processed;
src += processed;
in_size -= processed;
}
}
void LZMA_constructDCtx(LZMA2_DCtx *p)
{
p->dic = NULL;
p->ext_dic = 1;
p->state2 = LZMA2_STATE_FINISHED;
p->probs_1664 = p->probs + 1664;
}
static void LZMA_freeDict(LZMA2_DCtx *const p)
{
if (!p->ext_dic) {
free(p->dic);
}
p->dic = NULL;
}
void LZMA_destructDCtx(LZMA2_DCtx *const p)
{
LZMA_freeDict(p);
}
size_t LZMA2_getDictSizeFromProp(BYTE const dict_prop)
{
if (dict_prop > 40)
return FL2_ERROR(corruption_detected);
size_t const dict_size = (dict_prop == 40)
? (size_t)-1
: (((size_t)2 | (dict_prop & 1)) << (dict_prop / 2 + 11));
return dict_size;
}
static size_t LZMA2_dictBufSize(size_t const dict_size)
{
size_t mask = ((size_t)1 << 12) - 1;
if (dict_size >= ((size_t)1 << 30)) mask = ((size_t)1 << 22) - 1;
else if (dict_size >= ((size_t)1 << 22)) mask = ((size_t)1 << 20) - 1;
size_t dic_buf_size = ((size_t)dict_size + mask) & ~mask;
if (dic_buf_size < dict_size)
dic_buf_size = dict_size;
return dic_buf_size;
}
size_t LZMA2_decMemoryUsage(size_t const dict_size)
{
return sizeof(LZMA2_DCtx) + LZMA2_dictBufSize(dict_size);
}
size_t LZMA2_initDecoder(LZMA2_DCtx *const p, BYTE const dict_prop, BYTE *const dic, size_t dic_buf_size)
{
size_t const dict_size = LZMA2_getDictSizeFromProp(dict_prop);
if (FL2_isError(dict_size))
return dict_size;
if (dic == NULL) {
dic_buf_size = LZMA2_dictBufSize(dict_size);
if (p->dic == NULL || dic_buf_size != p->dic_buf_size) {
LZMA_freeDict(p);
p->dic = malloc(dic_buf_size);
if (p->dic == NULL)
return FL2_ERROR(memory_allocation);
p->ext_dic = 0;
}
}
else {
LZMA_freeDict(p);
p->dic = dic;
p->ext_dic = 1;
}
p->dic_buf_size = dic_buf_size;
p->prop.lc = 3;
p->prop.lp = 0;
p->prop.lc = 2;
p->prop.dic_size = (U32)dict_size;
p->state2 = LZMA2_STATE_CONTROL;
p->need_init_dic = 1;
p->need_init_state2 = 1;
p->need_init_prop = 1;
LZMA_init(p);
return FL2_error_no_error;
}
static void LZMA_updateWithUncompressed(LZMA2_DCtx *const p, const BYTE *const src, size_t const size)
{
memcpy(p->dic + p->dic_pos, src, size);
p->dic_pos += size;
if (p->check_dic_size == 0 && p->prop.dic_size - p->processed_pos <= size)
p->check_dic_size = p->prop.dic_size;
p->processed_pos += (U32)size;
}
static unsigned LZMA2_nextChunkInfo(BYTE *const control,
size_t *const unpack_size, size_t *const pack_size,
LZMA2_props *const prop,
const BYTE *const src, ptrdiff_t *const src_len)
{
ptrdiff_t const len = *src_len;
*src_len = 0;
if (len <= 0)
return LZMA2_STATE_CONTROL;
*control = *src;
if (*control == 0) {
*src_len = 1;
return LZMA2_STATE_FINISHED;
}
if (len < 3)
return LZMA2_STATE_CONTROL;
if (LZMA2_IS_UNCOMPRESSED_STATE(*control)) {
if (*control > 2)
return LZMA2_STATE_ERROR;
*src_len = 3;