-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path02_imag.py
executable file
·134 lines (113 loc) · 5.23 KB
/
02_imag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python3
import os
import gym
import ptan
import argparse
import numpy as np
from tensorboardX import SummaryWriter
import torch
import torch.nn.functional as F
import torch.optim as optim
from lib import common, i2a
LEARNING_RATE = 5e-4
NUM_ENVS = 16
BATCH_SIZE = 64
SAVE_EVERY_BATCH = 1000
OBS_WEIGHT = 10.0
REWARD_WEIGHT = 1.0
def get_obs_diff(prev_obs, cur_obs):
prev = np.array(prev_obs)[-1]
cur = np.array(cur_obs)[-1]
prev = prev.astype(np.float32) / 255.0
cur = cur.astype(np.float32) / 255.0
return cur - prev
def iterate_batches(envs, net, device="cpu"):
act_selector = ptan.actions.ProbabilityActionSelector()
mb_obs = np.zeros((BATCH_SIZE, ) + common.IMG_SHAPE, dtype=np.uint8)
mb_obs_next = np.zeros((BATCH_SIZE, ) + i2a.EM_OUT_SHAPE, dtype=np.float32)
mb_actions = np.zeros((BATCH_SIZE, ), dtype=np.int32)
mb_rewards = np.zeros((BATCH_SIZE, ), dtype=np.float32)
obs = [e.reset() for e in envs]
total_reward = [0.0] * NUM_ENVS
total_steps = [0] * NUM_ENVS
batch_idx = 0
done_rewards = []
done_steps = []
while True:
obs_v = ptan.agent.default_states_preprocessor(obs).to(device)
logits_v, values_v = net(obs_v)
probs_v = F.softmax(logits_v, dim=1)
probs = probs_v.data.cpu().numpy()
actions = act_selector(probs)
for e_idx, e in enumerate(envs):
o, r, done, _ = e.step(actions[e_idx])
mb_obs[batch_idx] = obs[e_idx]
mb_obs_next[batch_idx] = get_obs_diff(obs[e_idx], o)
mb_actions[batch_idx] = actions[e_idx]
mb_rewards[batch_idx] = r
total_reward[e_idx] += r
total_steps[e_idx] += 1
batch_idx = (batch_idx + 1) % BATCH_SIZE
if batch_idx == 0:
yield mb_obs, mb_obs_next, mb_actions, mb_rewards, done_rewards, done_steps
done_rewards.clear()
done_steps.clear()
if done:
o = e.reset()
done_rewards.append(total_reward[e_idx])
done_steps.append(total_steps[e_idx])
total_reward[e_idx] = 0.0
total_steps[e_idx] = 0
obs[e_idx] = o
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action="store_true", help="Enable cuda")
parser.add_argument("-n", "--name", required=True, help="Name of the run")
parser.add_argument("-m", "--model", required=True, help="File with model to load")
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
saves_path = os.path.join("saves", "02_env_" + args.name)
os.makedirs(saves_path, exist_ok=True)
envs = [common.make_env() for _ in range(NUM_ENVS)]
writer = SummaryWriter(comment="-02_env_" + args.name)
net = common.AtariA2C(envs[0].observation_space.shape, envs[0].action_space.n)
net_em = i2a.EnvironmentModel(envs[0].observation_space.shape, envs[0].action_space.n).to(device)
net.load_state_dict(torch.load(args.model, map_location=lambda storage, loc: storage))
net = net.to(device)
print(net_em)
optimizer = optim.Adam(net_em.parameters(), lr=LEARNING_RATE)
step_idx = 0
best_loss = np.inf
with ptan.common.utils.TBMeanTracker(writer, batch_size=100) as tb_tracker:
for mb_obs, mb_obs_next, mb_actions, mb_rewards, done_rewards, done_steps in iterate_batches(envs, net, device):
if len(done_rewards) > 0:
m_reward = np.mean(done_rewards)
m_steps = np.mean(done_steps)
print("%d: done %d episodes, mean reward=%.2f, steps=%.2f" % (
step_idx, len(done_rewards), m_reward, m_steps))
tb_tracker.track("total_reward", m_reward, step_idx)
tb_tracker.track("total_steps", m_steps, step_idx)
obs_v = torch.FloatTensor(mb_obs).to(device)
obs_next_v = torch.FloatTensor(mb_obs_next).to(device)
actions_t = torch.LongTensor(mb_actions.tolist()).to(device)
rewards_v = torch.FloatTensor(mb_rewards).to(device)
optimizer.zero_grad()
out_obs_next_v, out_reward_v = net_em(obs_v.float()/255, actions_t)
loss_obs_v = F.mse_loss(out_obs_next_v.squeeze(-1), obs_next_v)
loss_rew_v = F.mse_loss(out_reward_v.squeeze(-1), rewards_v)
loss_total_v = OBS_WEIGHT * loss_obs_v + REWARD_WEIGHT * loss_rew_v
loss_total_v.backward()
optimizer.step()
tb_tracker.track("loss_em_obs", loss_obs_v, step_idx)
tb_tracker.track("loss_em_reward", loss_rew_v, step_idx)
tb_tracker.track("loss_em_total", loss_total_v, step_idx)
loss = loss_total_v.data.cpu().numpy()
if loss < best_loss:
print("Best loss updated: %.4e -> %.4e" % (best_loss, loss))
best_loss = loss
fname = os.path.join(saves_path, "best_%.4e_%05d.dat" % (loss, step_idx))
torch.save(net_em.state_dict(), fname)
step_idx += 1
if step_idx % SAVE_EVERY_BATCH == 0:
fname = os.path.join(saves_path, "em_%05d_%.4e.dat" % (step_idx, loss))
torch.save(net_em.state_dict(), fname)