-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpyqu.py
257 lines (206 loc) · 6.59 KB
/
pyqu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import math
from random import random
class ValueNotRepresentable(Exception):
def __init__(self, value, qubits, *args, **kwargs):
super(Exception, self).__init__('Can\'t represent value %s'
' with %s qubits' % (value, qubits))
def tensor(a, b):
cols_a, rows_a, cols_b, rows_b = len(a), len(a[0]), len(b), len(b[0])
return [[a[i//cols_b][j//rows_b]*b[i%cols_b][j%rows_b]
for j in range(rows_a*rows_b)]
for i in range(cols_a*cols_b)]
def weighted_choice(choices):
r = random()
for i, p in enumerate(choices):
r -= p
if r < 0:
return i
def rnd(v, digits=2):
'''rounds floats and complex numbers and
removes imaginary part if it's 0'''
try:
if round(v.imag, digits):
return complex(round(v.real, digits), round(v.imag, digits))
else:
return round(v.real, digits)
except:
return round(v, digits)
def col(v):
'''Print Qubit amplitudes (or any vector) in a column form'''
try:
print("\n".join(map(lambda x:str(rnd(x)), v._values)))
except:
print("\n".join(map(lambda x:str(rnd(x)), v)))
class Q:
def __init__(self, n=1, value=0, values=None):
if values:
self._values = values
self.n = math.log(len(values), 2)
else:
self.n = n
self._values = [0j]*2**n
try:
self._values[value] = 1+0j
except:
raise ValueNotRepresentable(value, n)
@property
def values(self):
return self._values
@values.setter
def values(self, v):
self._values = v
self.n = int(math.log(len(v), 2))
def prob(self, bit=None, digits=2):
if bit != None:
pos = 1 << bit
p = sum((v*v).real for i,v in enumerate(self.values) if i & pos)
if digits != None:
return (round(1 - p, digits), round(p, digits))
else:
return (1 - p, p)
else:
try:
return [round((v*v).real, digits) for v in self._values]
except:
return [(v*v).real for v in self._values]
def measure(self, bit=None):
if bit != None:
result = int(random() > self.prob(bit=bit, digits=None)[0])
#Collapsing state
pos = 1 << bit
d = 0
for i,v in enumerate(self.values):
if bool(i & pos) != bool(result): #XOR
self.values[i] = 0
else:
d += (v*v).real
#Normalizing values
self.values = [v/math.sqrt(d) for v in self.values]
return result
else:
result = weighted_choice(self.prob(digits=None))
#collapsing to state i
self._values = [0j]*2**self.n
self._values[result] = 1+0j
return result
def __getitem__(self, i):
try:
return QLabel(self, i, i + 1)
except:
return QLabel(self, i.start, i.stop)
def __pow__(self, q):
return Q(values=tensor([self._values], [q._values])[0])
def __str__(self):
return str([rnd(v) for v in self._values])
def __repr__(self):
return str([rnd(v) for v in self._values])
class QLabel:
def __init__(self, q, begin, end):
self._q = q
self._begin = begin or 0
self._end = end or q.n
self.n = self._end - self._begin
def reverse(self):
self._begin, self._end = self._end, self._begin
@property
def values(self):
return self._q.values
@values.setter
def values(self, v):
self._q.values = v
def __str__(self):
return str(self._q)
def __repr__(self):
return str(self._q)
class Operator:
def __init__(self, matrix):
'''matrix is a list of columns'''
self._matrix = matrix
@property
def cols(self):
return len(self._matrix)
@property
def rows(self):
return len(self._matrix[0])
def inverse(self):
n = len(self._matrix)
m = [[self[i][j].conjugate() for j in range(n)] for i in range(n)]
return Operator(m)
def __getitem__(self, i):
return self._matrix[i]
def __pow__(self, o):
return Operator(tensor(self._matrix, o._matrix))
def __mul__(self, q):
if isinstance(q, Q):
v = [sum(self[j][i]*q.values[j]
for j in range(self.rows))
for i in range(self.cols)]
return Q(values=v)
else:
m = [[sum(a*b for a,b in zip(X_row,Y_col))
for Y_col in zip(*q._matrix)]
for X_row in self._matrix]
return Operator(m)
def __call__(self, q):
return self*q
def __repr__(self):
return repr(self._matrix)
class Identity(Operator):
def __init__(self, size=1):
m = [[int(i==j) for j in range(2**size)] for i in range(2**size)]
super(Identity, self).__init__(m)
class Hadamard(Operator):
def __init__(self, size=1):
a = 1/math.sqrt(2) + 0j
base = Operator([[a,a], [a,-a]])
m = base
for i in range(size - 1):
m = m**base
super(Hadamard, self).__init__(m._matrix)
class Cnot(Operator):
def __init__(self):
m = [[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]]
super(Cnot, self).__init__(m)
def operation(o, q):
if isinstance(q, QLabel):
if q._begin > 0:
op = Identity(q._begin)
op = op**o
else:
op = o
if q._end < q._q.n:
op = op**Identity(q._q.n - q._end)
q.values = op(q._q).values
return q._q
else:
q.values = o(q).values
return q
def H(q):
h = Hadamard(q.n)
return operation(h, q)
def CNOT(q, qt=None):
'''qt is the target qubit label, if set, assuming q is the
control qubit label'''
if qt:
#Performing a Cnot without building the operator
val = list(q.values)
ctrl_mask, target_mask = 1 << q._begin, 1 << qt._begin
for i,v in enumerate(q.values):
if i & ctrl_mask:
val[i ^ target_mask] = q.values[i]
q.values = val
return q._q
else:
c = Cnot()
return operation(c, q)
def measure(q):
if isinstance(q, QLabel):
result = 0
for i in range(q._begin, q._end, 1 if q._begin < q._end else -1):
result += q._q.measure(i) << (i - q._begin)
return result
else:
return q.measure()