-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
67 lines (53 loc) · 2.47 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import streamlit as st
from tensorflow.keras.models import load_model
import tensorflow as tf
import matplotlib.pyplot as plt
import io
import base64
# Set the matplotlib backend to 'Agg' to avoid threading issues
plt.switch_backend('Agg')
def load_face_generator_model(model_path):
return load_model(model_path)
def generate_image(model, size):
noise = tf.random.normal([1, 100])
generated_image = model(noise)
generated_image_resized = tf.image.resize(generated_image, [size, size])
return generated_image_resized
def normalize_image(image):
image = (image - tf.reduce_min(image)) / (tf.reduce_max(image) - tf.reduce_min(image))
return image
def enhance_contrast(image, factor=1.5):
mean = tf.reduce_mean(image)
return tf.clip_by_value((image - mean) * factor + mean, 0, 1)
def plot_image(generated_image, size):
enhanced_image = enhance_contrast(normalize_image(generated_image[0])).numpy()
fig, ax = plt.subplots(figsize=(3.6, 3.6)) # Larger figure size for better quality
ax.imshow(enhanced_image)
ax.axis('off')
img_io = io.BytesIO()
plt.savefig(img_io, format='png', bbox_inches='tight', pad_inches=0)
img_io.seek(0)
plt.close(fig)
return img_io
def create_download_link(img_io):
b64 = base64.b64encode(img_io.getvalue()).decode()
href = f'''
<a href="data:file/png;base64,{b64}" download="generated_image.png">
<button style="background-color:#4CAF50; border:none; color:white; padding:15px 32px; text-align:center; text-decoration:none; display:inline-block; font-size:16px; margin:4px 2px; cursor:pointer;">Download Image</button>
</a>
'''
return href
def run_app(model_path='face_generator_REFINED_120.h5'):
model = load_face_generator_model(model_path)
st.title("Image Generator")
st.write(" ")
size = st.slider("Select Image Size", min_value=64, max_value=512, value=128)
if st.button("Generate"):
generated_image_resized = generate_image(model, size)
img_io = plot_image(generated_image_resized, size)
# Display the enhanced image at a smaller size for better visual quality
st.image(enhance_contrast(normalize_image(generated_image_resized[0])).numpy(), width=200, caption="Generated Image")
download_link = create_download_link(img_io)
st.markdown(download_link, unsafe_allow_html=True)
if __name__ == '__main__':
run_app()