-
Removed overclustering support from k-means because it is not well-tested, may be buggy, and is (I think) unused. If this was support you were using, open a bug or get in touch with us; it would not be hard for us to reimplement it.
-
Refactored KMeans to allow different types of Lloyd iterations.
-
Added implementations of k-means: Elkan's algorithm, Hamerly's algorithm, Pelleg-Moore's algorithm, and the DTNN (dual-tree nearest neighbor) algorithm.
-
Significant acceleration of LRSDP via the use of accu(a % b) instead of trace(a * b).
-
Added MatrixCompletion class (matrix_completion), which performs nuclear norm minimization to fill unknown values of an input matrix.
-
No more dependence on Boost.Random; now we use C++11 STL random support.
-
Add softmax regression, contributed by Siddharth Agrawal and QiaoAn Chen.
-
Changed NeighborSearch, RangeSearch, FastMKS, and RASearch API; these classes now take the query sets in the Search() method, instead of in the constructor.
-
Use OpenMP, if available. For now OpenMP support is only available in the DET training code.
-
Add support for predicting new test point values to LARS and the command-line 'lars' program.
-
Proper handling of dimension calculation in PCA.
-
Load parameter vectors properly for LinearRegression models.
-
Linker fixes for AugLagrangian specializations under Visual Studio.
-
Add support for observation weights to LinearRegression.
-
MahalanobisDistance<> now takes root of the distance by default and therefore satisfies the triangle inequality (TakeRoot now defaults to true).
-
Better handling of optional Armadillo HDF5 dependency.
-
Fixes for numerous intermittent test failures.
-
math::RandomSeed() now sets the random seed for recent (>=3.930) Armadillo versions.
-
Handle Newton method convergence better for SparseCoding::OptimizeDictionary() and make maximum iterations a parameter.
-
Known bug: CosineTree construction may fail in some cases on i386 systems (#358).
-
Bugfix for NeighborSearch regression which caused very slow allknn/allkfn. Speeds are now restored to approximately 1.0.8 speeds, with significant improvement for the cover tree (#347).
-
Detect dependencies correctly when ARMA_USE_WRAPPER is not being defined (i.e., libarmadillo.so does not exist).
-
Bugfix for compilation under Visual Studio (#348).
-
GMM initialization is now safer and provides a working GMM when constructed with only the dimensionality and number of Gaussians (#301).
-
Check for division by 0 in Forward-Backward Algorithm in HMMs (#301).
-
Fix MaxVarianceNewCluster (used when re-initializing clusters for k-means) (#301).
-
Fixed implementation of Viterbi algorithm in HMM::Predict() (#303).
-
Significant speedups for dual-tree algorithms using the cover tree (#235, #314) including a faster implementation of FastMKS.
-
Fix for LRSDP optimizer so that it compiles and can be used (#312).
-
CF (collaborative filtering) now expects users and items to be zero-indexed, not one-indexed (#311).
-
CF::GetRecommendations() API change: now requires the number of recommendations as the first parameter. The number of users in the local neighborhood should be specified with CF::NumUsersForSimilarity().
-
Removed incorrect PeriodicHRectBound (#58).
-
Refactor LRSDP into LRSDP class and standalone function to be optimized (#305).
-
Fix for centering in kernel PCA (#337).
-
Added simulated annealing (SA) optimizer, contributed by Zhihao Lou.
-
HMMs now support initial state probabilities; these can be set in the constructor, trained, or set manually with HMM::Initial() (#302).
-
Added Nyström method for kernel matrix approximation by Marcus Edel.
-
Kernel PCA now supports using Nyström method for approximation.
-
Ball trees now work with dual-tree algorithms, via the BallBound<> bound structure (#307); fixed by Yash Vadalia.
-
The NMF class is now AMF<>, and supports far more types of factorizations, by Sumedh Ghaisas.
-
A QUIC-SVD implementation has returned, written by Siddharth Agrawal and based on older code from Mudit Gupta.
-
Added perceptron and decision stump by Udit Saxena (these are weak learners for an eventual AdaBoost class).
-
Sparse autoencoder added by Siddharth Agrawal.
-
Memory leak in NeighborSearch index-mapping code fixed (#298).
-
GMMs can be trained using the existing model as a starting point by specifying an additional boolean parameter to GMM::Estimate() (#296).
-
Logistic regression implementation added in methods/logistic_regression (see also #293).
-
L-BFGS optimizer now returns its function via Function().
-
Version information is now obtainable via mlpack::util::GetVersion() or the __MLPACK_VERSION_MAJOR, __MLPACK_VERSION_MINOR, and __MLPACK_VERSION_PATCH macros (#297).
-
Fix typos in allkfn and allkrann output.
-
Cover tree support for range search (range_search), rank-approximate nearest neighbors (allkrann), minimum spanning tree calculation (emst), and FastMKS (fastmks).
-
Dual-tree FastMKS implementation added and tested.
-
Added collaborative filtering package (cf) that can provide recommendations when given users and items.
-
Fix for correctness of Kernel PCA (kernel_pca) (#270).
-
Speedups for PCA and Kernel PCA (#198).
-
Fix for correctness of Neighborhood Components Analysis (NCA) (#279).
-
Minor speedups for dual-tree algorithms.
-
Fix for Naive Bayes Classifier (nbc) (#269).
-
Added a ridge regression option to LinearRegression (linear_regression) (#286).
-
Gaussian Mixture Models (gmm::GMM<>) now support arbitrary covariance matrix constraints (#283).
-
MVU (mvu) removed because it is known to not work (#183).
-
Minor updates and fixes for kernels (in mlpack::kernel).
- Minor bugfix so that FastMKS gets built.
-
Speedups of cover tree traversers (#235).
-
Addition of rank-approximate nearest neighbors (RANN), found in src/mlpack/methods/rann/.
-
Addition of fast exact max-kernel search (FastMKS), found in src/mlpack/methods/fastmks/.
-
Fix for EM covariance estimation; this should improve GMM training time.
-
More parameters for GMM estimation.
-
Force GMM and GaussianDistribution covariance matrices to be positive definite, so that training converges much more often.
-
Add parameter for the tolerance of the Baum-Welch algorithm for HMM training.
-
Fix for compilation with clang compiler.
-
Fix for k-furthest-neighbor-search.
-
Force minimum Armadillo version to 2.4.2.
-
Better output of class types to streams; a class with a ToString() method implemented can be sent to a stream with operator<<.
-
Change return type of GMM::Estimate() to double (#257).
-
Style fixes for k-means and RADICAL.
-
Handle size_t support correctly with Armadillo 3.6.2 (#258).
-
Add locality-sensitive hashing (LSH), found in src/mlpack/methods/lsh/.
-
Better tests for SGD (stochastic gradient descent) and NCA (neighborhood components analysis).
-
Remove internal sparse matrix support because Armadillo 3.4.0 now includes it. When using Armadillo versions older than 3.4.0, sparse matrix support is not available.
-
NCA (neighborhood components analysis) now support an arbitrary optimizer (#245), including stochastic gradient descent (#249).
-
Added density estimation trees, found in src/mlpack/methods/det/.
-
Added non-negative matrix factorization, found in src/mlpack/methods/nmf/.
-
Added experimental cover tree implementation, found in src/mlpack/core/tree/cover_tree/ (#157).
-
Better reporting of boost::program_options errors (#225).
-
Fix for timers on Windows (#212, #211).
-
Fix for allknn and allkfn output (#204).
-
Sparse coding dictionary initialization is now a template parameter (#220).
-
Added kernel principal components analysis (kernel PCA), found in src/mlpack/methods/kernel_pca/ (#74).
-
Fix for Lovasz-Theta AugLagrangian tests (#182).
-
Fixes for allknn output (#185, #186).
-
Added range search executable (#192).
-
Adapted citations in documentation to BiBTeX; no citations in -h output (#195).
-
Stop use of 'const char*' and prefer 'std::string' (#176).
-
Support seeds for random numbers (#177).
- Initial release. See any resolved tickets numbered less than #196 or execute this query: http://www.mlpack.org/trac/query?status=closed&milestone=mlpack+1.0.0