forked from broadinstitute/malaria-amplicon-pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunDADA2.R
298 lines (260 loc) · 9.99 KB
/
runDADA2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#!/bin/R env
library(argparse)
# Custom filtering, denoising parameters (if not default) can be provided as a separate config file?
parser <- ArgumentParser()
parser$add_argument("-p", "--path_to_meta", help="Path to input meta file listing fastqs (required)")
parser$add_argument("-c", "--class", help="Class specifying 'parasite' or 'vector' (required if '--default' is specified)")
parser$add_argument("-d", "--dir", help="Working directory path for writing all dada2 output files")
parser$add_argument("-o", "--output_filename", help="output tab-separated filename (required)")
parser$add_argument("-s", "--save_run", help="save Run as R workspace image")
parser$add_argument("-ee", "--maxEE",
help="Maximum expected errors for filtering forward and reverse read")
parser$add_argument("-tR", "--trimRight",
help="Length for trimming from right for both forward and reverse reads")
parser$add_argument("-mL", "--minLen", type="integer",
help="minimum length required for reads on both end. Shorter reads are discarded")
parser$add_argument("-tQ", "--truncQ",
help="truncate reads to first occurence of truncQ. All filtered reads have quality >= truncQ")
parser$add_argument("-id", "--matchIDs", type="integer",
help="match ids on fastqs to make sure reads on forward and reverse end are in same order")
parser$add_argument("-mC", "--max_consist", type="integer",
help="Maximum cycles for error model until consistency. If no convergence, error values at max_consist cycle are used")
parser$add_argument("-wA", "--omega_a", type="double",
help="P-value threshold in sample inference for forming a new partition")
parser$add_argument("-jC", "--justConcatenate", type="integer",
help="Specify whether ASVs need to be concatinated with Ns instead of merging")
parser$add_argument("--bimera", action='store_true', help="Optionally output list of sequences identified as bimeras")
args <- parser$parse_args()
library(dada2)
library(limma)
library(data.table)
# Universal parameters
work_dir <- args$dir
path_to_meta <- args$path_to_meta
if (file.exists(path_to_meta)) {
metafile <- fread(path_to_meta, sep = "\t", header=FALSE)
sample.names <- metafile$V1
fnFs <- metafile$V2
fnRs <- metafile$V3
} else {
stop(paste("metafile",path_to_meta,"not found!"))
}
# obtain/initialize Parameters
# (Universal) Parameters
randomize=TRUE
selfConsist=TRUE
filter = TRUE
matchIDs <- args$matchIDs
# Parameters for merging
justConcatenate <- args$justConcatenate
# DADA2 and Filtering parameters
maxEE <- args$maxEE
trimRight <- args$trimRight
minLen <- args$minLen
truncQ <- args$truncQ
max_consist <- args$max_consist
omega_a <- args$omega_a
if (is.null(matchIDs)||matchIDs == '') {
matchIDs = TRUE
} else {
matchIDs = as.logical(as.numeric(args$matchIDs))
}
if (is.null(trimRight)||trimRight == '') {
trimRight = c(0,0)
} else {
trimRight <- as.numeric(strsplit(trimRight,',')[[1]])
}
if (is.null(truncQ)||truncQ == '') {
truncQ = c(5,5)
} else {
truncQ <- as.numeric(strsplit(truncQ,',')[[1]])
}
if (args$class == "parasite") {
# Parameters for filtering
if (is.null(maxEE)||maxEE == '') {
maxEE = c(5,5)
} else {
maxEE <- as.numeric(strsplit(maxEE,',')[[1]])
}
if (is.null(minLen)||minLen == '') {
minLen=30
} else {
minLen = as.numeric(minLen)
}
# Parameters for Denoising
if (is.null(max_consist)||max_consist == '') {
max_consist=10
} else {
max_consist = as.numeric(max_consist)
}
if (is.null(omega_a)||omega_a == '') {
omega_a=1e-120
} else {
omega_a = as.numeric(omega_a)
}
#Parameters for merging
if (is.null(justConcatenate)||justConcatenate == '') {
justConcatenate = FALSE
} else {
justConcatenate = as.logical(as.numeric(justConcatenate))
}
#justConcatenate=FALSE
} else if (args$class == "vector") {
# Parameters for filtering
if (is.null(maxEE)||maxEE == '') {
maxEE = c(2,2)
} else {
maxEE <- as.numeric(strsplit(maxEE,',')[[1]])
}
if (is.null(minLen)||minLen == '') {
minLen=75
} else {
minLen = as.numeric(minLen)
}
# Parameters for Denoising
if (is.null(max_consist)||max_consist == '') {
max_consist=20
} else {
max_consist = as.numeric(max_consist)
}
if (is.null(omega_a)||omega_a == '') {
omega_a=1e-40
} else {
omega_a = as.numeric(omega_a)
}
#Parameters for merging
if (is.null(justConcatenate)||justConcatenate == '') {
justConcatenate = TRUE
} else {
justConcatenate = as.logical(as.numeric(justConcatenate))
}
#justConcatenate=TRUE
} else {
stop("Please provide valid option for the '--class' argument")
}
#Output parameters
if (dirname(args$output_filename) != ".") {
output_filename <- args$output_filename
} else {
output_filename <- paste0(work_dir,"/",args$output_filename)
}
#Datatable to summarize parmeters
parameter_df <- data.frame(maxEE=maxEE,
trimRight=trimRight,
minLen=minLen,
truncQ=truncQ,
matchIDs=matchIDs,
max_consist=max_consist,
randomize=randomize,
selfConsist=selfConsist,
OMEGA_A=omega_a,
justConcatenate=justConcatenate)
print(parameter_df)
# List files and sample names
if (length(fnFs) == 0 || length(fnFs) != length(fnRs)) {
stop("fastq files incomplete or not found")
}
# Plot Quality profiles before filering
png(paste0(work_dir,"/qualityF.png"), height = 800, width = 700)
try(print(plotQualityProfile(fnFs[1:2])), silent = TRUE)
dev.off()
png(paste0(work_dir,"/qualityR.png"),height = 800, width = 700)
try(print(plotQualityProfile(fnRs[1:2])), silent = TRUE)
dev.off()
# Create paths for filtered fastq
filtFs <- file.path(work_dir, "filtered", paste0(sample.names, "_filt_R1.fastq.gz"))
filtRs <- file.path(work_dir, "filtered", paste0(sample.names, "_filt_R2.fastq.gz"))
names(filtFs) <- sample.names
names(filtRs) <- sample.names
# Filter read
if (filter == TRUE) {
print("filtering samples...")
out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs,
maxN=0, maxEE=maxEE, trimRight=trimRight, truncQ=truncQ, minLen=minLen,
rm.phix=TRUE, compress=TRUE, multithread=TRUE, verbose=TRUE,
matchIDs=matchIDs)
print("filtering done!")
} else {
print("skipping filter except mandatory removal of N's... ")
out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncQ=c(0,0), maxN=0, rm.phix=TRUE,
compress=TRUE, multithread=TRUE, verbose=TRUE, matchIDs=matchIDs)
}
# Report and Correct for samples with zero reads after filter
zeros <- row.names(out)[out[,2] == 0]
write.table(zeros, paste0(work_dir,"/zeroReadSamples.txt"), sep = "\t", quote = FALSE)
filtFs <- filtFs[out[,2] != 0]
filtRs <- filtRs[out[,2] != 0]
sample.names <- sample.names[out[,2] != 0]
# Update Out table
out <- out[(out[,2] != 0),]
#Compute the error model
print("starting error model learning for forward reads...")
errF <- learnErrors(filtFs, multithread=TRUE, verbose=2, randomize=randomize, MAX_CONSIST=max_consist)
print("starting error model learning for reverse reads...")
errR <- learnErrors(filtRs, multithread=TRUE, verbose=2, randomize=randomize, MAX_CONSIST=max_consist)
#Plot the Errors
png(paste0(work_dir,"/errF.png"), height = 800, width = 700)
try(print(plotErrors(errF, nominalQ=TRUE)), silent = TRUE)
dev.off()
png(paste0(work_dir,"/errR.png"), height = 800, width = 700)
try(print(plotErrors(errR, nominalQ=TRUE)), silent = TRUE)
dev.off()
#DeReplicate the reads
derepFs <- derepFastq(filtFs, verbose = TRUE)
derepRs <- derepFastq(filtRs, verbose = TRUE)
# Name the derep-class objects by the sample names
names(derepFs) <- sample.names
names(derepRs) <- sample.names
#Run core DADA2 algorithm
print("starting dada2 for forward reads...")
dadaFs <- dada(derepFs, err=errF, selfConsist=selfConsist, multithread=TRUE, verbose=TRUE, OMEGA_A=omega_a)
print("starting dada2 for reverse reads...")
dadaRs <- dada(derepRs, err=errR, selfConsist=selfConsist, multithread=TRUE, verbose=TRUE, OMEGA_A=omega_a)
# Merge reads
print("merging paird ends...")
mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose=TRUE, justConcatenate=justConcatenate, trimOverhang = TRUE)
#Generate sequence table
print("generating sequence table...")
seqtab <- makeSequenceTable(mergers)
print("Number of sequences in table")
print(dim(seqtab))
# Inspect distribution of sequence lengths
print(table(nchar(getSequences(seqtab))))
#Remove Chimeras
if(args$bimera) {
print("identifying bimeric sequences...")
seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=TRUE)
print("Number of non-bimeric sequences:")
print(dim(seqtab.nochim)[2])
print("Percentage of reads which are non-bimeric:")
print(sum(seqtab.nochim)/sum(seqtab))
bimeras <- !(colnames(seqtab) %in% colnames(seqtab.nochim))
write.table(data.frame(sequence = colnames(seqtab), bimera = bimeras), file=paste0(work_dir,"/ASVBimeras.txt"),
quote=FALSE, sep="\t", row.names=FALSE)
} else {
print("skipping Bimera identification..")
}
# Track reads through the pipeline
getN <- function(x) sum(getUniques(x))
track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(mergers, getN), rowSums(seqtab.nochim))
# If processing a single sample, remove the sapply calls: e.g. replace sapply(dadaFs, getN) with getN(dadaFs)
colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim")
rownames(track) <- sample.names
# sink summary from stdout to a file
sink(paste0(work_dir,"/reads_summary.txt"))
print(track)
#close sink
sink()
#Show the barplot of length distribution
png(paste0(work_dir,"/sequences_barplot.png"), height = 800, width = 700)
print(barplot(table(nchar(getSequences(seqtab)))))
dev.off()
#Generate output: sequence table to a tsv
write.table(seqtab, file=output_filename, quote = FALSE, sep = "\t")
# Save Run as R workspace image (Optional)
if (is.null(args$save_run)||args$save_run == '') {
print("--save_run not found or empty. skip saving Rdata image to a file")
} else {
rm(fnFs,fnRs,filtFs,filtRs,derepFs,derepRs,errF,errR)
save.image(paste0(work_dir,"/",args$save_run))
}