-
Notifications
You must be signed in to change notification settings - Fork 0
/
nemo.cpp
1079 lines (957 loc) · 35 KB
/
nemo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (C) 2018 Fernando Portela <[email protected]>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include <unistd.h>
// ViennaRNA stuff
extern "C" {
#include "RNAstruct.h"
#include "fold_vars.h"
#include "fold.h"
#include "params.h"
#include "part_func.h"
#include "utils.h"
#include "convert_epars.h"
#include "read_epars.h"
#include "MEA.h"
}
// set to 0 to prevent use of base pair distances in the scoring function
#define USE_BPD 1
// set to 0 to prevent use of free energy differences in the scoring function
#define USE_DDG 1
// set to 0 to disable heuristics in the sampling phase
#define USE_DOMAIN_KNOWLEDGE 1
// A few globals
// FIXME: globals are ugly, refactor whenever possible
//
int verbosity = 0;
bool standard_nmcs = false;
int iter = 2500;
char* target = NULL;
char* start = NULL;
char* seed = NULL;
short* pt = NULL; // Pair Table
short* mt = NULL; // Mismatch Table
int* lt = NULL; // Loop Table
int* jct = NULL; // Junction Table
int* smap = NULL; // Strength Map
int npairs;
int* shuffle = NULL;
bool found = false;
bool force_boost = false;
// --------------------------------------------------------------------------
// Utilities
//
int my_urn( int from, int to )
{
return ( ( (int) (drand48()*(to-from+1)) ) + from );
}
int pair_map( char a, char b )
{
if( (a ^ b ^ 'G' ^ 'C') == 0 ) return 3;
if( (a ^ b ^ 'A' ^ 'U') == 0 ) return 2;
if( (a ^ b ^ 'G' ^ 'U') == 0 ) return 1;
return 0;
}
// FIXME: A mismatch table should be 2D, not just 1D
// In the grand scheme of things, it probably doesn't affect results
// that much, but there's a clear flaw about using a simple 1D array:
// all 1-N internal loops (except 1-1 ones) are missing the fact that
// the lone unpaired base has 2 mismatch partners, not just one.
//
short* make_mismatch_table( short* pt )
{
short* mt = (short*)calloc( 1+pt[0], sizeof(short) );
int j;
for( j = 1; j <= pt[0]; j++ ) {
if( pt[j] ) {
if( j < pt[0] && pt[j] > 1 && pt[j+1] && pt[pt[j]-1]
&& pt[j+1] != pt[j]-1 ) {
mt[j+1] = pt[j] - 1;
mt[pt[j] - 1] = j+1;
}
continue;
}
if( j < pt[0] && pt[j+1] && pt[j+1]+1 <= pt[0] ) {
mt[j] = pt[j+1] + 1;
mt[pt[j+1] + 1] = j;
} else if( j > 1 && pt[j-1] && pt[j-1]-1 >= 1 ) {
mt[j] = pt[j-1] - 1;
mt[pt[j-1] - 1] = j;
}
}
return mt;
}
// Initialize helper arrays marking the closing pairs in various loops
//
int* scan_loops( short* pt )
{
int len = pt[0];
int* map = (int*)calloc( 1+len, sizeof(int) );
int mark = 1;
int j;
for( j = 1; j < len; j++ ) {
if( pt[j] <= 1 ) continue;
if( map[j] ) continue;
if( pt[pt[j]-1] != j+1 ) {
map[j] = mark;
int k = j;
do {
do {
if( ++k > len ) k = 1;
} while( pt[k]==0 );
k = pt[k];
map[k] = mark;
} while( k != j );
mark++;
}
}
map[0] = mark;
return map;
}
int* scan_junctions( short* pt, int* lt )
{
int len = pt[0];
int* map = (int*)calloc( 1+len, sizeof(int) );
memmove( map, lt, (1+len)*sizeof(int) );
int mark = lt[0];
while( --mark ) {
int j;
int count = 0;
for( j = 1; j <= len; j++ ) if( map[j] == mark ) count++;
if( count <= 2 ) {
for( j = 1; j <= len; j++ ) if( map[j] == mark ) map[j] = 0;
}
}
return map;
}
// The "strength map" encodes a rough measure of the "fragility" of the
// structure at the considered index. Long helices are "strong", isolated
// base pairs, junctions, etc, are "weak".
//
// The map comes into play when deciding which side in a misfolded pair
// should be mutated. The heuristic is that a "strong" domain should be
// able to take a mutation more easily than a weaker one.
//
int* make_strength_map( short* pt, short* mt )
{
int len = pt[0];
int* map = (int*)calloc( 1+len, sizeof(int) );
int j;
for( j = 1; j <= len; j++ ) {
int i, k;
if( pt[j] ) {
for( i = 1; i < 3; i++ ) {
k = j - i;
if( k >= 1 ) map[k] += 3 - i;
k = j + i;
if( k <= len ) map[k] += 3 - i;
}
} else if( mt[j] ) {
int up = j;
while( up <= len && pt[up]==0 ) up++;
int down = j;
while( down >= 1 && pt[down]==0 ) down--;
int minus = 2;
if( up > len || down < 1 ) { // dangling end
minus = 4;
} else if ( pt[down] > down && pt[up] < up ) { // hairpin
minus = 3;
} else if ( pt[down] < down && pt[up] > up ) { // multiloop
minus = 4;
} else { // internal loop I guess...
if( pt[down]-pt[up] == 1 ) { // bulge
minus = up-down==2 ? 5 : 4;
} else {
minus = up-down==2 ? 3 : 2;
}
}
for( i = 1; i < minus; i++ ) {
k = j - i;
if( k >= 1 ) map[k] -= minus - i;
k = j + i;
if( k <= len ) map[k] -= minus - i;
}
}
}
// normalize the array to make the minimum exactly 1
int m = 999;
for( j = 1; j <= len; j++ ) if( map[j] < m ) m = map[j];
for( j = 1; j <= len; j++ ) map[j] += 1 - m;
return map;
}
// When resetting a position to N, take the pair partner as well, if any
//
void set_N( char* seq, short* pt, int pos )
{
seq[pos] = 'N';
if( pt[1+pos] ) seq[pt[1+pos]-1] = 'N';
}
// --------------------------------------------------------------------------
// Playout scoring
//
// The first experimentations with Nested Monte-Carlo searches were done
// with normal_score() and were painfully slow.
// quick_score() was an attempt to use a (much) faster approximation.
// But solving rate dropped by about a 1/3
//
// Dead code, currently
//
double quick_score( char* position )
{
int length = strlen( target );
int* map = (int*) calloc( length*length, sizeof(int) );
int i,j,k;
// fill
for( i = 0; i < length-1; i++ ) {
for( j = i+1; j < length; j++ ) {
map[i*length+j] = pair_map( position[i], position[j] );
}
}
double sum = 1;
int o;
for( o = 0; o < 2; o++ ) {
for( i = 2; i < length - 5; i++ ) {
int prev_len, len = 0;
int prev_weight, weight = 0;
int expected = 0;
int prev_j = -length;
int last = 0;
for( j=i, k=i+o+4; j >= 0 && k < length; j--, k++ ) {
int v = map[j*length+k];
if( v==0 && last==0 ) continue;
if( v==0 ) {
if( len > 2 && len != expected ) {
sum += log(len) * weight;
}
prev_len = len;
len = 0;
prev_weight = weight;
weight = 0;
prev_j = j;
expected = 0;
} else {
if( last == 0 ) {
if( j - prev_j <= 6 ) {
sum -= log(prev_len) * prev_weight;
len = prev_len;
weight = prev_weight - (j - prev_j - 2);
}
}
if( pt[j+1] == k+1 ) expected++;
weight += v;
len++;
if( j >= 3 && k < length - 3 ) {
int x = j*length+k;
if( map[x-(length-1)]==1 && map[x-2*(length-1)]==1 && map[x-3*(length-1)]>0
&& position[j-1] != position[j-2] ) {
// crossed UG
map[x-(length-1)] = 0;
map[x-2*(length-1)] = 0;
}
}
}
last = v;
}
if( len > 2 && len != expected ) {
sum += log(len) * weight;
}
}
}
free( map );
double score = 1. / (1. + log( sum ) );
if( 0 ) printf("QS: %s %f\n", position, score );
return score;
}
double normal_score( char* position )
{
char* secstr = strdup( position );
secstr[0] = '\0';
double e = fold( position, secstr );
int bpd = bp_distance( target, secstr );
#if USE_DDG
double es = energy_of_structure( position, target, 0 );
#endif
free( secstr );
if( bpd == 0 ) {
found = true;
if( verbosity > 1 ) printf( "Found match:\n%s\n", position );
return 1.0;
}
double score;
#if USE_BPD
score = (npairs==0 ? 1.0 / (1.0 + bpd) : 1.0 - (0.5 * bpd) / npairs);
#endif
#if USE_DDG
double e_factor = 1.01 + es - e;
#if USE_BPD
score *= (score < 0 ? e_factor : 1.0/e_factor);
#else
score = 1.0/e_factor;
#endif
#endif
return score;
}
// --------------------------------------------------------------------------
// Playouts related functions
//
// we may need these some day, or something alike
//
const char* maxCC = "CCC";
const char* maxGG = "GGG";
bool is_legal( char* position )
{
#if 0
if( maxCC && strstr( position, maxCC ) != NULL ) return false;
if( maxGG && strstr( position, maxGG ) != NULL ) return false;
#endif
return true;
}
bool undecided( char x )
{
return (strchr( "AUGC", x ) == NULL);
}
bool locked( int pos )
{
return !undecided( start[pos-1] );
}
bool test_move( char* position, int o, char base )
{
bool ok = true;
char save = position[o];
position[o] = base;
ok = is_legal( position );
position[o] = save;
return ok;
}
bool play_move( char* position, const char* bases, int z = -1 )
{
int l = strspn( position, bases );
int len = pt[0];
if( pt[l+1] ) { // it's a pair
if( z < 0 ) { // and we're instructed to choose a random one
int w[] = { 16, 16, 9, 9, 2, 2 };
#if USE_DOMAIN_KNOWLEDGE
// Tuning of weights for adjacent stacks in junctions.
// When looking at adjcent stacks in junctions from the point of view of an
// observer at the center of the loop, it is usually better to make sure that
// the left one has a high probability of being GC/CG, while the rightmost one
// can usually afford to be demoted to AU/UA.
//
if( l < len-1 && mt[1+l+1] && pt[1+l+1] && pt[1+l+1] < len && mt[pt[1+l+1]+1] == 1+l) {
// ok, looks like adjacent stacks, but we need to eliminate the possibility
// that it could be a 0-N bulge
if( jct[1+l] || jct[pt[1+l]] ) {
w[0] -= 6; w[1] -= 6; w[2] += 6; w[3] += 6;
}
}
if( l > 0 && mt[1+l-1] && pt[1+l-1] && pt[1+l-1] > 1 && mt[pt[1+l-1]-1] == 1+l) {
if( jct[1+l] || jct[pt[1+l]] ) {
w[0] += 6; w[1] += 6; w[2] -= 6; w[3] -= 6;
}
}
// Tuning for triloops
// Only GC/CG closing pairs work if the supporting pair also is GC/CG
int d, j, k;
if( pt[1+l] > (1+l) ) {
d = pt[1+l] - (1+l);
j = 1+l + 1;
k = 1+l - 1;
} else {
d = (1+l) - pt[1+l];
j = pt[1+l] + 1;
k = pt[1+l] - 1;
}
if( d == 4 && pair_map( position[k-1], position[pt[1+k-1]-1] ) == 3 ) {
w[2] = 0; w[3] = 0; w[4] = 0; w[5] = 0;
}
if( d == 6 && pt[j] && pt[j]-j == 4 && !undecided( position[j-1] )
&& pair_map( position[j-1], position[pt[j]-1] ) != 3 ) {
w[0] = 0; w[1] = 0;
}
#endif
if( !test_move( position, l, 'C' ) ) w[0] = 0;
if( !test_move( position, l, 'G' ) ) { w[1] = 0; w[5] = 0; }
if( !test_move( position, l, 'U' ) ) { w[2] = 0; w[4] = 0; }
if( !test_move( position, l, 'A' ) ) w[3] = 0;
if( !test_move( position, pt[1+l]-1, 'C' ) ) w[1] = 0;
if( !test_move( position, pt[1+l]-1, 'G' ) ) { w[0] = 0; w[4] = 0; }
if( !test_move( position, pt[1+l]-1, 'U' ) ) { w[3] = 0; w[5] = 0; }
if( !test_move( position, pt[1+l]-1, 'A' ) ) w[2] = 0;
// FIXME: what if all w[]==0 ?
int dice = int_urn( 0, w[0]+w[1]+w[2]+w[3]+w[4]+w[5]-1 );
for( z = 0; dice >= w[z]; z++ ) dice -= w[z];
// should leave us with 0 <= z <= 5 randomly selected according to weights
// FIXME: isn't this a perfect spot for asserting?
}
switch( z ) {
case 0:
position[l] = 'C'; position[pt[l+1]-1] = 'G';
break;
case 1:
position[l] = 'G'; position[pt[l+1]-1] = 'C';
break;
case 2:
position[l] = 'U'; position[pt[l+1]-1] = 'A';
break;
case 3:
position[l] = 'A'; position[pt[l+1]-1] = 'U';
break;
case 4:
position[l] = 'U'; position[pt[l+1]-1] = 'G';
break;
case 5:
position[l] = 'G'; position[pt[l+1]-1] = 'U';
break;
default:
return false;
}
} else { // unpaired, so choose a random base
int w[] = { 93, 1, 5, 1 };
if( z < 0 && mt[l+1] ) { // is mismatched
if( pt[mt[l+1]] ) { // mismatch is paired
// FIXME: this would probably be a good place to use some (ML-based?) optimization
// for weights fine-tuning
switch( position[mt[l+1]-1] ) {
case 'A': w[0]=5; w[1]=0; w[2]=2; w[3]=1; break;
case 'U': w[0]=0; w[1]=6; w[2]=1; w[3]=4; break;
case 'G': w[0]=2; w[1]=1; w[2]=5; w[3]=0; break;
case 'C': w[0]=6; w[1]=4; w[2]=0; w[3]=1; break;
}
} else { // mismatch is unpaired
int dice;
int up, down, close;
if( l > 0 && pt[1+l-1] == mt[1+l]+1 ) {
up = l+1;
down = mt[1+l];
} else {
down = l+1;
up = mt[1+l];
}
close = up - 1;
int u, d;
for( u = 0; up+u <= len && pt[up+u]==0; u++ );
for( d = 0; down > d && pt[down-d]==0; d++ );
bool internal_loop = ( up+u <= len && down > d && pt[up+u] == down-d );
//
// once computations to identify the motif are done,
// we try to apply some domain-related knowledge
//
// FIXME: the above structural analysis should probably be done once
// at the start since it only depends on the pt and mt arrays
// which stay static throughout the execution
//
// FIXME: these "tricks" below should be learned by some ML algorithm
//
if( internal_loop && down-d == close ) { // unbranched & single segment = hairpin
#if USE_DOMAIN_KNOWLEDGE
// A test for a potential 'slide' from a triloop to a GAAA tetraloop
// If matched, have a good chance to apply the "anti-boost" (U/C in the middle
// of the triloop)
if( l > 1 && d == 3 && undecided(position[l+1]) && position[l-1] == 'G'
&& pair_map(position[l-2], position[l+3]) > 0
&& (force_boost || int_urn(0,1)==0) ) {
dice = int_urn(0, 9);
if( dice < 5 ) {
position[l+1] = 'U';
} else if( dice < 9 ) {
position[l+1] = 'C';
}
}
// Simple apical loop G/A boosting
if( undecided(position[mt[1+l]-1]) && d > 3
&& (force_boost || int_urn(0,5)!=0) ) {
if( test_move( position, l, 'G' )
&& test_move( position, mt[1+l]-1, 'A' ) ) {
z = 2;
position[mt[1+l]-1] = 'A';
}
}
#endif
} else if( internal_loop ) {
if( mt[l+1] > l+1 ) {
w[0]=5; w[1]=1; w[2]=20; w[3]=1;
} else {
w[0]=21; w[1]=1; w[2]=4; w[3]=1;
}
if( undecided(position[mt[1+l]-1]) ) {
#if USE_DOMAIN_KNOWLEDGE
// 1-1 internal loop
if( u == 1 && d == 1 ) {
dice = int_urn(0, 9);
if( force_boost || dice < 8 ) {
if( test_move( position, l, 'G' )
&& test_move( position, mt[1+l]-1, 'G' ) ) {
z = 2;
position[mt[1+l]-1] = 'G';
}
}
}
// 2-2 internal loop
if( u == 2 && d == 2 ) {
dice = int_urn(0, 1);
if( (force_boost || dice == 0) && undecided(position[l+1])
&& undecided(position[mt[1+l]-1-1]) ) {
if( test_move( position, l, 'U' )
&& test_move( position, mt[1+l]-1, 'G' )
&& test_move( position, l+1, 'G' )
&& test_move( position, mt[1+l]-1-1, 'U' ) ) {
z = 1;
position[mt[1+l]-1] = 'G';
position[l+1] = 'G';
position[mt[1+l]-1-1] = 'U';
}
}
}
// if a selection hasn't been made yet, try typical boosts for
// internal loops (G/A, A/G, U/U)
if( z < 0 ) {
dice = int_urn(0, 9);
if( dice < 3 ) {
z = 2;
position[mt[1+l]-1] = 'A';
} else if( dice < 6 ) {
z = 0;
position[mt[1+l]-1] = 'G';
} else if( dice < 7 ) {
z = 1;
position[mt[1+l]-1] = 'U';
}
}
#endif
} else {
switch( position[mt[1+l]-1] ) {
case 'A': w[0]=4; w[1]=0; w[2]=4; w[3]=1; break;
case 'U': w[0]=0; w[1]=6; w[2]=1; w[3]=2; break;
case 'G': w[0]=6; w[1]=1; w[2]=2; w[3]=0; break;
case 'C': w[0]=4; w[1]=1; w[2]=0; w[3]=1; break;
}
}
} else { // a mismatch in a junction or external loop
w[0]=97; w[1]=1; w[2]=1; w[3]=1;
#if USE_DOMAIN_KNOWLEDGE
if( down == 1+l ) {
if( (l < 1 || pt[1+l-1]==0) && position[l+1] == 'G' && position[pt[1+l+1]-1] == 'C' ) {
w[3]=48; // increase chance of C boost
}
} else {
if( (l >= len-1 || pt[1+l+1]==0) && position[l-1] == 'G' && position[pt[1+l-1]-1] == 'C' ) {
w[2]=48; // increase chance of G boost
}
}
#endif
}
}
}
if( z < 0 ) {
if( !test_move( position, l, 'A' ) ) w[0] = 0;
if( !test_move( position, l, 'U' ) ) w[1] = 0;
if( !test_move( position, l, 'G' ) ) w[2] = 0;
if( !test_move( position, l, 'C' ) ) w[3] = 0;
int dice = int_urn( 0, w[0]+w[1]+w[2]+w[3]-1 );
for( z = 0; dice >= w[z]; z++ ) dice -= w[z];
}
switch( z ) {
case 0: position[l] = 'A'; break;
case 1: position[l] = 'U'; break;
case 2: position[l] = 'G'; break;
case 3: position[l] = 'C'; break;
}
}
return is_legal( position );
}
// --------------------------------------------------------------------------
// The "core" of the Nested Monte-Carlo algorithm
//
double sample( char* position )
{
int k;
for( k = 0; k < pt[0]; k++ ) {
if( position[k]=='N' && pt[1+k] ) position[k] = 'P';
}
// first fill the target pairs
char bases[] = "AUGCN";
while( strspn( position, bases ) != strlen( position ) ) {
play_move( position, bases, -1 );
}
// now fill the rest, i.e. the unpaired bases
bases[4] = 0;
while( strspn( position, bases ) != strlen( position ) ) {
play_move( position, bases, -1 );
}
return normal_score( position );
}
#define WORST_SCORE -100000.0
double nested( char* position, int level )
{
if( strspn( position, "AUGC" ) == strlen( position ) ) {
return normal_score( position );
}
double best = WORST_SCORE;
char* best_playout = strdup( position );
char* best_local = strdup( position );
while( strspn( position, "AUGC" ) != strlen( position ) ) {
int l = strspn( position, "AUGC" );
double max = WORST_SCORE;
int z;
int zm = pt[l+1]==0? 4 : 6;
if( level == 1 ) {
if (verbosity > 3) printf("==== %s\n", position);
#pragma omp parallel for schedule(dynamic)
for( z = 0; z < zm; z++ ) {
char* playout = strdup( position );
if( !play_move( playout, "AUGC", z ) ) continue;
double v = sample( playout );
if (verbosity > 3) printf("---- %s %f\n", playout, v);
#pragma omp critical(max_update)
{
if( v > max ) {
max = v;
strcpy( best_local, playout );
}
}
free( playout );
}
} else {
for( z = 0; z < zm; z++ ) {
char* playout = strdup( position );
if( !play_move( playout, "AUGC", z ) ) continue;
double v = nested( playout, level - 1 );
if( v > max ) {
max = v;
strcpy( best_local, playout );
}
free( playout );
}
}
if( standard_nmcs || (max > best) ) {
best = max;
strcpy( best_playout, best_local );
}
if( found ) {
strcpy( position, best_playout );
break;
}
position[l] = best_playout[l];
if( pt[l+1] ) {
position[pt[l+1]-1] = best_playout[pt[l+1]-1];
} else if( mt[l+1] && position[mt[l+1]-1]=='N' && pt[mt[l+1]-1]==0 ) {
position[mt[l+1]-1] = best_playout[mt[l+1]-1];
}
}
free( best_playout );
free( best_local );
return best;
}
// --------------------------------------------------------------------------
// Main body of the program
//
void config_eterna( void )
{
// convert_parameter_file("vrna185.par", "vrna185x2.par", VRNA_CONVERT_OUTPUT_ALL);
read_parameter_file("vrna185x.par");
dangles = 1;
update_fold_params(); // useful ?
}
void usage( const char* cmd )
{
printf( "Usage: %s [-E] [-v[v[v]]] [-i <n_iter>] <target_struct> [<start_sequence>]\n", cmd );
}
// FIXME: use something proper like getopt (?)
//
bool parse_arguments( int argc, char** argv )
{
char* command = argv[0];
while( argc > 1 && argv[1][0] == '-' ) {
if( strcmp( argv[1], "-E" )==0 ) {
config_eterna();
argc--;
argv++;
} else if( strcmp( argv[1], "-S" )==0 ) {
standard_nmcs = true;
argc--;
argv++;
} else if( strcmp( argv[1], "-i" )==0 ) {
iter = atoi( argv[2] );
argc -= 2;
argv += 2;
} else if( strncmp( argv[1], "-v", 2 )==0 ) {
char* p = &(argv[1][1]);
for( /* */; (*p)=='v'; p++ ) verbosity++;
argc--;
argv++;
} else {
printf( "Unknow argument '%s'.\n", argv[1] );
usage( command );
return false;
}
}
if( argc > 1 ) {
target = strdup( argv[1] );
if( strspn( target, "(.)" ) != strlen(target) ) {
printf( "Invalid character '%c' in structure.\n", target[strspn( target, "(.)" )] );
return false;
}
if( argc > 2 ) {
start = strdup( argv[2] );
if( strlen(start) != strlen(target) ) {
printf( "Sequence length doesn't match target structure.\n" );
return false;
}
if( strspn( start, "AUGCN" ) != strlen(start) ) {
printf( "Invalid character '%c' in sequence.\n", start[strspn( start, "AUGCN" )] );
return false;
}
if( argc > 3 ) {
seed = strdup( argv[3] );
if( strlen(seed) != strlen(target) ) {
printf( "Seed sequence length doesn't match target structure.\n" );
return false;
}
if( strspn( seed, "AUGC" ) != strlen(start) ) {
printf( "Invalid character '%c' in seed sequence.\n", seed[strspn( seed, "AUGC" )] );
return false;
}
}
} else {
start = strdup( argv[1] );
memset( start, 'N', strlen( target ) );
}
} else {
usage( command );
return false;
}
return true;
}
void init_globals( void )
{
init_rand();
time_t now = time( NULL );
srand48( now ^ 0x5A5A5A5A );
int len = strlen( start );
pt = make_pair_table( target );
mt = make_mismatch_table( pt );
lt = scan_loops( pt );
jct = scan_junctions( pt, lt );
smap = make_strength_map( pt, mt );
char* p;
for( npairs = 0, p = target; p[npairs]; p[npairs]=='('? (void)npairs++ : (void)p++ );
shuffle = (int*) calloc( len, sizeof(int) );
int k;
for( k = 0; k < len; k++ ) shuffle[k] = k;
if( verbosity > 2 ) {
printf( " " );
for( k = 1; k <= len; k++ ) {
printf( "%c", pt[k]? ( pt[k] > k? (mt[k]? '[' : '(') : (mt[k]? ']' : ')' ) ) : mt[k]? '*' : '.' );
}
printf("\n ");
for( k = 1; k <= len; k++ ) {
printf( "%c", lt[k]? (jct[k]? 'Y' : '|') : '.' );
}
printf("\n");
fflush( stdout );
}
}
int main( int argc, char** argv )
{
if( !parse_arguments( argc, argv ) ) return 1;
init_globals();
int len = strlen( start );
char* copy = strdup( start );
char* position = strdup( start );
char* secstr = strdup( target );
secstr[0] = '\0';
int closest_bpd = 999999;
char* closest_seq = strdup( start );
char* closest_struct = strdup( target );
double closest_fe;
int stuck = 0;
char* last_copy = strdup( start );
double final, e;
int bpd;
int n_iter = iter;
if( seed ) strcpy( copy, seed );
for( ; iter; iter-- ) {
strcpy( position, copy );
// half the time, use the best boosts we know of during playouts
force_boost = int_urn(0,1)==0;
// (try to) solve
final = nested( position, 1 );
// score the search result
secstr[0] = 0;
e = fold( position, secstr );
bpd = bp_distance( target, secstr );
if( verbosity > 0 ) {
printf( " %f %.2f %d (%d)\n", final, e, bpd, iter ); fflush( stdout );
}
if( bpd == 0 ) break;
if( bpd < closest_bpd ) {
closest_bpd = bpd;
strcpy( closest_seq, position );
strcpy( closest_struct, secstr );
closest_fe = e;
}
// Our previous attempt failed. Rather than simply increase depth, or just
// try again with the original starting point, we build a new starting point based
// on what seems to have worked and what didn't (misfolds)
int i, j, k, c;
// let's get a pair map of the misfolded structure
short* pa = make_pair_table( secstr );
bool* retry = (bool*)calloc( 1+len, sizeof(bool) );
for( j = 1; j <= len; j++ ) retry[j] = (pt[j] != pa[j]);
for( j = 1; j <= len; j++ ) {
// add mismatches of the misfolded bases
if( !retry[j] && mt[j] && retry[mt[j]] ) retry[j] = true;
}
short* ma = make_mismatch_table( pa );
int* la = scan_loops( pa );
for( j = 1; j < la[0]; j++ ) {
for( i = 1; i <= len && la[i] != j; i++ ) ;
bool has_opened_pair = false;
bool closing_good = true;
k = i;
do {
do {
if( ++k > len ) k = 1;
if( pa[k]==0 && pt[k] ) has_opened_pair = true;
} while( pa[k]==0 );
if( pa[k] != pt[k] ) closing_good = false;
k = pa[k];
} while( k != i && closing_good );
if( closing_good && has_opened_pair ) {
do {
do {
if( ++k > len ) k = 1;
if( pa[k] || ma[k] ) retry[k] = true;
} while( pa[k]==0 );
k = pa[k];
retry[k] = true;
} while( k != i );
}
}
// we're ready
do {
strcpy( copy, position );
for( k = 0; k < len; k++ ) {
// choose random r, with r != k
int r = int_urn(0, len-2);
if( r >= k ) r++;
// cool exercise for job interviews: ask the candidate what these 3 lines do.
shuffle[k] ^= shuffle[r];
shuffle[r] ^= shuffle[k];
shuffle[k] ^= shuffle[r];
// full points for the correct answer
// bonus point for finding the answer without writing anything down
// bonus point if the candidate declares "this is evil / bad style"
// bonus point if the candidate can cite a context where this trick
// might be justified or useful
}
for( k = 0, c = 0; k < len; k++ ) {
i = shuffle[k];
// not a misfolded (or otherwise interesting) spot? let's keep it
if( !retry[1+i] ) continue;
// we don't want to reset and retry all misfolded bases and pairs
// so we use probabilities, first 1/1, then 1/2, 1/3 and so on
// this guarantess that we will reset at least one base or pair,
// and maybe a few more.
if( int_urn(0,c++)!=0 ) continue;
// FIXME: Ad hoc rules, based on personal experience.
// Could probably use some ML improvements as well...
if( copy[i] != 'N' && pa[1+i] && copy[pa[1+i]-1] != 'N' ) {
if( pt[1+i]==0 && pt[pa[1+i]]==0 ) {
set_N( copy, pt, i );
set_N( copy, pt, pa[1+i]-1 );
} else {
if( locked( pa[1+i] ) || int_urn(0, smap[1+i]+smap[pa[1+i]]-1) < smap[1+i] ) {
set_N( copy, pt, i );
} else {
set_N( copy, pt, pa[1+i]-1 );
}
}
} else if( copy[i] != 'N' ) {
set_N( copy, pt, i );
}
if( mt[1+i] ) {
set_N( copy, pt, mt[1+i]-1 );
}
if( i > 0 && pt[1+i] && pt[1+i-1]==0 && mt[1+i-1] ) {
j = i - 1;
copy[j] = 'N';
set_N( copy, pt, mt[1+j]-1 );
if( pa[1+i]==0 ) {
do {
if( --j < 0 ) break;