-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsample.d
47 lines (38 loc) · 1.12 KB
/
sample.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import std.random, std.math, std.mathspecial, std.exception;
real sampleFlip(real p){
return uniform!"[]"(0.0L,1.0L)<=p;
}
real sampleUniformInt(real a,real b){
enforce(ceil(a)>=long.min && floor(b)<=long.max);
return uniform!"[]"(cast(long)ceil(a),cast(long)floor(b));
}
real sampleGauss(real μ,real ν){
return (μ+sqrt(ν)*normalDistributionInverse(uniform!"[]"(0.0L,1.0L)));
}
real sampleUniform(real a,real b){
return uniform!"[]"(a,b);
}
real sampleLaplace(real μ,real b){
return μ+b*(2*.uniform!"[]"(0,1)-1)*log(uniform!"(]"(0.0L,1.0L));
}
real sampleRayleigh(real ν){
return sqrt(-2*ν*log(.uniform!"(]"(0.0L,1.0L)));
}
real samplePareto(real a,real b){
return b/(.uniform!"(]"(0.0L,1.0L)^^(1.0/a));
}
real sampleGamma(real α,real β){ // Marsaglia & Tang, 2000
if(α<1) return sampleGamma(1+α,β)*sampleUniform(0,1)^^(1/α);
real d=α-1.0/3.0,c=1.0/sqrt(9.0*d);
for(;;){
real x=sampleGauss(0,1),v=1+c*x,u;
if(v>0){
v=v*v*v,u=sampleUniform(0,1);
if(u<1-0.331*x*x*x*x||log(u)<0.5*x*x+d*(1-v+log(v)))
return d*v/β;
}
}
}
real sampleExponential(real λ){
return -log(uniform!"(]"(0.0L,1.0L))/λ;
}