-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathScript_02-modeling-via-PLS.R
393 lines (318 loc) · 13.6 KB
/
Script_02-modeling-via-PLS.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Introduction ------------------------------------------------------------
# Code written to perform modeling of Soil Organic Carbon, in spread
# soil profiles along the State of Pernambuco, Brazil, using: Partial
# Least Squares regression (PLS); which is a non-penalized and combination
# based method.
# The predictors, or features, are derived from soil spectral signatures
# from Visible, Near-Infrared, Shortwave Infrared, and Middle Infrared.
# The two types of spectra (VNIR-SWIR and MIR) were previously processed
# by applying: continuum removal and spectral derivative of first and
# second orders; it means expanding the space of predictors.
# This code is part of Erli Pinto dos Santos thesis at
## Department of Agricultural Engineering, Universidade Federal de Viçosa,
## Brazil
## Author: Erli Pinto dos Santos
## Contact-me at: [email protected] or [email protected]
# Last update: May 31th, 2023
# Requested packages ------------------------------------------------------
# Optimizating
memory.limit(size = 32000)
# Helper packages
library(readxl) # For reading Excel files
library(writexl) # For writting Excel files
library(random) # For generating true random numbers
# Dealing with data
library(tidyr) # For data gathering
library(dplyr) # Functions for data wrangling
library(tibble) # A soft data frame
library(lubridate) # For dealing with dates
library(glue) # To copy and paste
# Data visualization
library(ggplot2) # For awesome plots!
# Modelling packages
library(rsample) # For data subsampling
library(caret) # Machine Learning Modeling
library(CAST) # For space-time validation and testing
library(pls) # FOr partial least square models
# Importing data ----------------------------------------------------------
# Getting Middle Infrared data
load("./01_database/03_MIR.RData")
# Getting Visible - Near Infrared - Shortwave Infrared data
load("./01_database/02_Vis_NIR_SWIR.RData")
# Soil profile numeric variable -------------------------------------------
# Creating a variable to identify each soil profile
# numerically
SoilProfile <- tibble(Amostra = MIR$Amostra %>% unique(),
Perfil = 1:(MIR$Amostra %>% unique() %>% length()))
MIR <- MIR %>% mutate(Perfil = match(MIR$Amostra, SoilProfile$Amostra))
VNIR_SWIR <- Vis_NIR_SWIR %>% mutate(Perfil = match(Vis_NIR_SWIR$Amostra,
SoilProfile$Amostra))
remove(Vis_NIR_SWIR)
# Splitting datasets ------------------------------------------------------
## Splitting datasets for Leave-Location-Out holdout testing
set.seed(256)
ProfileF <- sample(1:(MIR$Amostra %>% unique() %>% length()),
round(0.8*(MIR$Amostra %>% unique() %>% length()), 0))
MIR_LSPO_training <- MIR %>% dplyr::filter(Perfil %in% ProfileF)
#MIR_LSPO_testing <- MIR %>% dplyr::filter(!Perfil %in% ProfileF)
set.seed(365)
ProfileF <- sample(1:(MIR$Amostra %>% unique() %>% length()),
round(0.8*(MIR$Amostra %>% unique() %>% length()), 0))
VNIR_LSPO_training <- VNIR_SWIR %>% dplyr::filter(Perfil %in% ProfileF)
#VNIR_LSPO_testing <- VNIR_SWIR %>% dplyr::filter(!Perfil %in% ProfileF)
# Getting a vector of true random numbers ---------------------------------
# We are using the package "random" to get true random numbers,
# derived from atmospheric noise. The functions only work with
# internet connection.
#randomNumbers(n = 100, # The number of numbers to use as randomization seeds
# min = 100, # The minimum number value
# max = 100000,# The maximum number value
# col = 1 # The number of columns to allocate that numbers
# )
## The true random numbers were get once and stored in the following vector:
seeds <- c(5975, 99313, 33793, 55501, 40294, 92680, 62083, 81352, 25090,
10696, 96800, 20974, 940, 68193, 11611, 51541, 69547, 99820,
78468, 27883, 33767, 1117, 89593, 58773, 99559, 6692, 21182,
52077, 264, 84118, 15944, 1778, 93727, 11018, 2497, 95227, 66520,
18800, 98853, 23193, 84471, 52279, 17489, 22773, 49651, 12605,
70764, 17790, 43738, 87967, 38580, 10636, 22038, 4030,
44850, 86156, 27284, 42820, 66387, 84272, 3044, 6157, 28415,
50002, 88919, 6142, 83139, 3412, 25630, 79118, 12352, 70395,
81905, 32101, 96607, 16639, 65378, 64884, 31661, 55190, 29096,
72494, 85776, 80748, 60487, 8734, 17397, 76482, 88638, 92082,
90560, 40158, 41207, 86727, 90484, 27324, 83288, 66581, 65811, 54017)
# Training with LSPO-CV ----------------------------------------------------
ti <- Sys.time()
# Calibrating MIR based models using PLS method and LSPO cross-validation
pls_MIR_LSPO_cross_validation <- list()
pls_MIR_LSPO_best_models <- list()
for (i in 1:100) {
## Setting randomization seed
set.seed(seeds[i])
## Preparing for Space Folds
MIR_LSPO_obj <- CreateSpacetimeFolds(
MIR_LSPO_training,
spacevar = "Amostra", class = "Amostra",
k = 10)
MIR_LSPO_trCtrl <- trainControl(
method = "cv",
savePredictions = TRUE,
index = MIR_LSPO_obj$index,
indexOut = MIR_LSPO_obj$indexOut
)
## Training model
MIR_PLS_LSPO <- train(
`C (g kg)` ~ .,
data = MIR_LSPO_training %>%
select(c(14, 18:(ncol(MIR_LSPO_training)-1))),
method = "pls",
preProc = c("zv", "center", "scale"),
trControl = MIR_LSPO_trCtrl,
metric = "RMSE",
maximize = F,
tuneLength = 10
)
rm(MIR_LSPO_obj, MIR_LSPO_trCtrl)
## Saving tuned models
save(MIR_PLS_LSPO,
file = paste("./02_tuned_models/pls_MIR_LSPO_tuned_model_",
i,".RData", sep = ""))
## Getting cross-validation metrics
cv <- MIR_PLS_LSPO[["resample"]] %>% mutate(model = i)
pls_MIR_LSPO_cross_validation[[i]] <- cv
# Getting best models stats
bestIter <- MIR_PLS_LSPO[["finalModel"]][["bestIter"]][1,1]
result <- MIR_PLS_LSPO[["results"]] %>% filter(ncomp == bestIter)
pls_MIR_LSPO_best_models[[i]] <- result %>% mutate(model = i)
## Cleaning up memory space
rm(MIR_PLS_LSPO, cv, bestIter, result)
gc()
}
## Binding models results
pls_MIR_LSPO_cross_validation <- bind_rows(pls_MIR_LSPO_cross_validation)
pls_MIR_LSPO_best_models <- bind_rows(pls_MIR_LSPO_best_models)
## Writting in disc models results
save(pls_MIR_LSPO_cross_validation ,
file = "./03_crossValidation/pls_MIR_LSPO_cross_validation.RData")
save(pls_MIR_LSPO_best_models,
file = "./03_crossValidation/pls_MIR_LSPO_best_models.RData")
write_xlsx(pls_MIR_LSPO_cross_validation,
"./03_crossValidation/pls_MIR_LSPO_cross_validation.xlsx",
col_names = TRUE)
write_xlsx(pls_MIR_LSPO_best_models,
"./03_crossValidation/pls_MIR_LSPO_best_models.xlsx",
col_names = TRUE)
remove(pls_MIR_LSPO_cross_validation, pls_MIR_LSPO_best_models)
# Calibrating VNIR based models using PLS method and LSPO cross-validation
pls_VNIR_LSPO_cross_validation <- list()
pls_VNIR_LSPO_best_models <- list()
for (i in 1:100) {
## Setting randomization seed
set.seed(seeds[i])
## Preparing for Space Folds
VNIR_LSPO_obj <- CreateSpacetimeFolds(
VNIR_LSPO_training,
spacevar = "Amostra", class = "Amostra",
k = 10)
VNIR_LSPO_trCtrl <- trainControl(
method = "cv",
savePredictions = TRUE,
index = VNIR_LSPO_obj$index,
indexOut = VNIR_LSPO_obj$indexOut
)
## Training model
VNIR_PLS_LSPO <- train(
`C (g kg)` ~ .,
data = VNIR_LSPO_training %>%
select(c(14, 18:(ncol(VNIR_LSPO_training)-1))),
method = "pls",
preProc = c("zv", "center", "scale"),
trControl = VNIR_LSPO_trCtrl,
metric = "RMSE",
maximize = F,
tuneLength = 10
)
rm(VNIR_LSPO_obj, VNIR_LSPO_trCtrl)
## Saving tuned models
save(VNIR_PLS_LSPO,
file = paste("./02_tuned_models/pls_VNIR_LSPO_tuned_model_",
i,".RData", sep = ""))
## Getting cross-validation metrics
cv <- VNIR_PLS_LSPO[["resample"]] %>% mutate(model = i)
pls_VNIR_LSPO_cross_validation[[i]] <- cv
# Getting best models stats
bestIter <- VNIR_PLS_LSPO[["finalModel"]][["bestIter"]][1,1]
result <- VNIR_PLS_LSPO[["results"]] %>% filter(ncomp == bestIter)
pls_VNIR_LSPO_best_models[[i]] <- result %>% mutate(model = i)
## Cleaning up memory space
rm(VNIR_PLS_LSPO, cv, bestIter, result)
gc()
}
## Binding models results
pls_VNIR_LSPO_cross_validation <- bind_rows(pls_VNIR_LSPO_cross_validation)
pls_VNIR_LSPO_best_models <- bind_rows(pls_VNIR_LSPO_best_models)
## Writting in disc models results
save(pls_VNIR_LSPO_cross_validation ,
file = "./03_crossValidation/pls_VNIR_LSPO_cross_validation.RData")
save(pls_VNIR_LSPO_best_models,
file = "./03_crossValidation/pls_VNIR_LSPO_best_models.RData")
write_xlsx(pls_VNIR_LSPO_cross_validation,
"./03_crossValidation/pls_VNIR_LSPO_cross_validation.xlsx",
col_names = TRUE)
write_xlsx(pls_VNIR_LSPO_best_models,
"./03_crossValidation/pls_VNIR_LSPO_best_models.xlsx",
col_names = TRUE)
remove(pls_VNIR_LSPO_cross_validation, pls_VNIR_LSPO_best_models)
tf <- Sys.time()
write.table(paste0("Tempo requerido pelo PLS com LSPO CV","\n",
"Tempo inicial = ", ti, "\n",
"Tempo final = ", tf, "\n",
"Diferença de tempo = ", (tf-ti)),
file = "training_time_PLS_LSPO.txt")
# Training with k-Fold CV -------------------------------------------------
controlObject <- trainControl(method = "repeatedcv", number = 10,
repeats = 5)
ti <- Sys.time()
# Calibrating MIR based models using PLS method and k-Fold cross-validation
pls_MIR_kFold_cross_validation <- list()
pls_MIR_kFold_best_models <- list()
for (i in 1:100) {
## Setting randomization seed
set.seed(seeds[i])
## Training model
MIR_PLS_kFold <- train(
`C (g kg)` ~ .,
data = MIR_LSPO_training %>%
select(c(14, 18:(ncol(MIR_LSPO_training)-1))),
method = "pls",
preProc = c("zv", "center", "scale"),
trControl = controlObject,
metric = "RMSE",
maximize = F,
tuneLength = 10
)
## Saving tuned models
save(MIR_PLS_kFold,
file = paste("./02_tuned_models/pls_MIR_kFold_tuned_model_",
i,".RData", sep = ""))
## Getting cross-validation metrics
cv <- MIR_PLS_kFold[["resample"]] %>% mutate(model = i)
pls_MIR_kFold_cross_validation[[i]] <- cv
# Getting best models stats
bestIter <- MIR_PLS_kFold[["finalModel"]][["bestIter"]][1,1]
result <- MIR_PLS_kFold[["results"]] %>% filter(ncomp == bestIter)
pls_MIR_kFold_best_models[[i]] <- result %>% mutate(model = i)
## Cleaning up memory space
rm(MIR_PLS_kFold, cv, bestIter, result)
gc()
}
## Binding models results
pls_MIR_kFold_cross_validation <- bind_rows(pls_MIR_kFold_cross_validation)
pls_MIR_kFold_best_models <- bind_rows(pls_MIR_kFold_best_models)
## Writting in disc models results
save(pls_MIR_kFold_cross_validation ,
file = "./03_crossValidation/pls_MIR_kFold_cross_validation.RData")
save(pls_MIR_kFold_best_models,
file = "./03_crossValidation/pls_MIR_kFold_best_models.RData")
write_xlsx(pls_MIR_kFold_cross_validation,
"./03_crossValidation/pls_MIR_kFold_cross_validation.xlsx",
col_names = TRUE)
write_xlsx(pls_MIR_kFold_best_models,
"./03_crossValidation/pls_MIR_kFold_best_models.xlsx",
col_names = TRUE)
remove(pls_MIR_kFold_cross_validation, pls_MIR_kFold_best_models)
# Calibrating VNIR based models using PLS method and k-Fold cross-validation
pls_VNIR_kFold_cross_validation <- list()
pls_VNIR_kFold_best_models <- list()
for (i in 3:100) {
## Setting randomization seed
set.seed(seeds[i])
## Training model
VNIR_PLS_kFold <- train(
`C (g kg)` ~ .,
data = VNIR_LSPO_training %>%
select(c(14, 18:(ncol(VNIR_LSPO_training)-1))),
method = "pls",
preProc = c("zv", "center", "scale"),
trControl = controlObject,
metric = "RMSE",
maximize = F,
tuneLength = 10
)
## Saving tuned models
save(VNIR_PLS_kFold,
file = paste("./02_tuned_models/pls_VNIR_kFold_tuned_model_",
i,".RData", sep = ""))
## Getting cross-validation metrics
cv <- VNIR_PLS_kFold[["resample"]] %>% mutate(model = i)
pls_VNIR_kFold_cross_validation[[i]] <- cv
# Getting best models stats
bestIter <- VNIR_PLS_kFold[["finalModel"]][["bestIter"]][1,1]
result <- VNIR_PLS_kFold[["results"]] %>% filter(ncomp == bestIter)
pls_VNIR_kFold_best_models[[i]] <- result %>% mutate(model = i)
## Cleaning up memory space
rm(VNIR_PLS_kFold, cv, bestIter, result)
gc()
}
## Binding models results
pls_VNIR_kFold_cross_validation <- bind_rows(pls_VNIR_kFold_cross_validation)
pls_VNIR_kFold_best_models <- bind_rows(pls_VNIR_kFold_best_models)
## Writting in disc models results
save(pls_VNIR_kFold_cross_validation ,
file = "./03_crossValidation/pls_VNIR_kFold_cross_validation.RData")
save(pls_VNIR_kFold_best_models,
file = "./03_crossValidation/pls_VNIR_kFold_best_models.RData")
write_xlsx(pls_VNIR_kFold_cross_validation,
"./03_crossValidation/pls_VNIR_kFold_cross_validation.xlsx",
col_names = TRUE)
write_xlsx(pls_VNIR_kFold_best_models,
"./03_crossValidation/pls_VNIR_kFold_best_models.xlsx",
col_names = TRUE)
remove(pls_VNIR_kFold_cross_validation, pls_VNIR_kFold_best_models,
controlObject)
tf <- Sys.time()
write.table(paste0("Tempo requerido pelo PLS com k-Fold CV","\n",
"Tempo inicial = ", ti, "\n",
"Tempo final = ", tf, "\n",
"Diferença de tempo = ", (tf-ti)),
file = "training_time_PLS_kFold.txt")