-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
289 lines (257 loc) · 11.4 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import copy
import h5py
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as tt
from tqdm import tqdm
def get_mean_and_var(file_path):
"""
Get mean and variance of a HDF5 dataset. Assumes input shape of
[channels, width, height], and returns means and variances of shape
[channels].
"""
data_info = h5py.File(file_path, 'r')
summed, summed_squared = 0, 0
for idx in range(len(data_info)):
data = data_info[str(idx)]
image = torch.tensor(np.array(data), dtype=torch.float32)
# Mean over height, width dimensions
summed += torch.mean(image, dim=[1, 2])
summed_squared += torch.mean(image**2, dim=[1, 2])
mean = summed / len(data_info)
var = (summed_squared / len(data_info)) - mean**2
return mean, var
def get_data_loader(dataset, args):
"""
Return a torch dataloader object for iterating over a dataset.
"""
if (args.mini is True):
samples = int(len(dataset) / 1000)
sampler = torch.utils.data.RandomSampler(dataset, num_samples=samples,
replacement=True)
else:
sampler=None
return torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
sampler=sampler)
class HDF5Dataset(torch.utils.data.Dataset):
"""
Subclass the the torch dataset class so we can use the torch dataloader
for easy batching, etc. of the dataset.
Inspired by towardsdatascience.com/hdf5-datasets-for-pytorch-631ff1d750f5.
"""
def __init__(self, file_path, transform=None):
super().__init__()
self.data_info = h5py.File(file_path, 'r')
self.transform = transform
def __len__(self):
return len(self.data_info['/'])
def __getitem__(self, index):
data = self.data_info[str(index)]
image = torch.tensor(np.array(data), dtype=torch.float32)
if self.transform:
image = self.transform(image)
label = torch.tensor(data.attrs.get('label').flatten(),
dtype=torch.float32)
return (image, label)
class Model(nn.Module):
"""
Implementation of 'HomographyNet' (see https://arxiv.org/pdf/1606.03798.pdf
Fig. 1.)
Code nearly identical to implementation from
github.com/mazenmel/Deep-homography-estimation-Pytorch, with dropout layers
added, as described in the paper.
"""
def __init__(self, dropout):
super(Model,self).__init__()
self.dropout = dropout
self.layer1 = nn.Sequential(nn.Conv2d(2, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())
self.layer2 = nn.Sequential(nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer3 = nn.Sequential(nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())
self.layer4 = nn.Sequential(nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer5 = nn.Sequential(nn.Conv2d(64, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU())
self.layer6 = nn.Sequential(nn.Conv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer7 = nn.Sequential(nn.Conv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU())
self.layer8 = nn.Sequential(nn.Conv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU())
self.dropout = nn.Dropout(p=0.5)
# Output of final conv layer produces 128 16x16 feature maps
self.fc1 = nn.Linear(128 * 16 * 16, 1024)
# Final linear layer predicts the eight values defining the four
# corner offsets:
# [tl.x, tl.y, tr.x, tr.y, br.x, br.y, bl.x, bl.y]
# where:
# tl = top left corner offset
# tr = top right corner offset
# br = bottom right corner offset
# bl = bottom left corner offset
self.fc2 = nn.Linear(1024, 8)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
x = self.layer7(x)
x = self.layer8(x)
if self.dropout is True:
x = self.dropout(x)
x = x.view(-1, 128 * 16 * 16)
x = self.fc1(x)
if self.dropout is True:
x = self.dropout(x)
x = self.fc2(x)
return x
def mean_average_corner_error(predicted, label):
"""
A loss criterion for evaluating a predicted homography by comparing
predicted and ground truth (i.e. label) corner locations.
"""
diff = label.subtract(predicted) # (B, 8) error per corner dimension
diff = diff.pow(2) # (B, 8) squared error per corner dimension
diff = diff.reshape((-1, 4, 2)) # (B, 4, 2) squared error by corner
diff = diff.sum(-1) # (B, 4) sum the squared error per corner
diff = diff.sqrt() # (B, 4) L2 distance per corner
diff = diff.mean(-1) # (B,) mean of L2 distance per sample
mace = diff.mean(-1) # (1,) mean over all of test dataset
return mace
def test(data_loader, model, criterion, device):
"""
A generic function for testing a model using some data, based on some
criterion.
"""
model.eval()
running_loss = 0
data_loader_ = tqdm(data_loader, desc="\tTesting:", total=len(data_loader),
ncols=70)
for image, label in data_loader_:
image = image.to(device)
label = label.to(device)
with torch.no_grad():
output = model(image)
loss = criterion(output, label)
running_loss += loss
mean_loss = running_loss / len(data_loader)
return mean_loss.to('cpu').item()
def train_val(train_loader, val_loader, model, criterion, optimizer, num_epochs,
device):
"""
A generic function for simultaneously training and validate a model over
some number of epochs using some data, based on some criterion.
"""
best_params = None
best_loss = None
for epoch in range(num_epochs):
print("Epoch {}/{}".format(epoch + 1, num_epochs))
# Train
model.train()
running_train_loss = 0
train_loader_ = tqdm(train_loader,
desc="\tTraining:",
total=len(train_loader),
ncols=70)
for image, label in train_loader_:
optimizer.zero_grad()
image = image.to(device)
label = label.to(device)
output = model(image)
loss = criterion(output, label)
running_train_loss += loss
loss.backward()
optimizer.step()
mean_train_loss = running_train_loss / len(train_loader)
# Validate
val_loss = test(data_loader=val_loader,
model=model,
criterion=criterion,
device=device)
print("\tMean train loss:", mean_train_loss.to('cpu').item())
print("\tMean validation loss:", val_loss)
# Save model parameters correspodning to best validation result
if best_loss == None or val_loss < best_loss:
best_loss = val_loss
best_params = copy.deepcopy(model.state_dict())
# Return the model with parameters that produced the lowest validation loss
print("Saving model params with best validation loss: {}".format(best_loss))
model.load_state_dict(best_params)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Learning the homography between two images via deep '
'learning on the COCO dataset.')
parser.add_argument('--test-data', type=str, required=True,
help='The path to the hdf5 file containing test data')
parser.add_argument('--train-data', type=str, required=True,
help='The path to the hdf5 file containing training '
'data')
parser.add_argument('--batch-size', type=int, default=1, required=False,
help='The batch size')
parser.add_argument('--epochs', type=int, default=1, required=False,
help='The number of epochs to train over')
parser.add_argument('--device', type=str, default='cpu', required=False,
help='The device the model is executed on',
choices=['cpu', 'cuda'])
parser.add_argument('--normalize', type=bool, default=False, required=False,
help='If true, normalize the image data that is the '
'input to the model')
parser.add_argument('--dropout', type=bool, default=True, required=False,
help='If true, include dropout layers after the fully '
'connected layers')
parser.add_argument('--mini', type=bool, default=False, required=False,
help='If true, use a toy subsample of the dataset')
args = parser.parse_args()
torch.manual_seed(0)
device = torch.device(args.device)
model = Model(args.dropout).to(device)
# Training and validation
print("Training and validation phase:")
if args.normalize is True:
train_val_mean, train_val_var = get_mean_and_var(args.train_data)
transform = tt.Normalize(train_val_mean,
train_val_var**0.5) if args.normalize else None
train_val_data_set = HDF5Dataset(args.train_data, transform=transform)
training_length = int(len(train_val_data_set) * 0.8)
train_data_set, val_data_set = torch.utils.data.random_split(
dataset=train_val_data_set,
lengths=[training_length, len(train_val_data_set) - training_length])
train_loader = get_data_loader(train_data_set, args)
val_loader = get_data_loader(val_data_set, args)
final_model = train_val(train_loader=train_loader,
val_loader=val_loader,
model=model,
criterion=torch.nn.MSELoss(),
optimizer=torch.optim.AdamW(model.parameters()),
num_epochs=args.epochs,
device=device)
# Testing
print("Final evalutaion on test data:")
if args.normalize is True:
test_mean, test_var = get_mean_and_var(args.test_data)
test_transform = tt.Normalize(test_mean,
test_var**0.5) if args.normalize else None
test_data_set = HDF5Dataset(args.test_data, transform=test_transform)
mean_mace = test(data_loader=get_data_loader(test_data_set, args),
model=final_model,
criterion=mean_average_corner_error,
device=device)
print("Final mean MACE:", mean_mace)