-
Notifications
You must be signed in to change notification settings - Fork 62
/
ArduinoMidiDrums.ino
226 lines (190 loc) · 6.32 KB
/
ArduinoMidiDrums.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
* Copyright (c) 2015 Evan Kale
* Email: [email protected]
* Website: www.ISeeDeadPixel.com
* www.evankale.blogspot.ca
*
* This file is part of ArduinoMidiDrums.
*
* ArduinoMidiDrums is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Piezo defines
#define NUM_PIEZOS 6
#define SNARE_THRESHOLD 30 //anything < TRIGGER_THRESHOLD is treated as 0
#define LTOM_THRESHOLD 30
#define RTOM_THRESHOLD 30
#define LCYM_THRESHOLD 100
#define RCYM_THRESHOLD 100
#define KICK_THRESHOLD 50
#define START_SLOT 0 //first analog slot of piezos
//MIDI note defines for each trigger
#define SNARE_NOTE 70
#define LTOM_NOTE 71
#define RTOM_NOTE 72
#define LCYM_NOTE 73
#define RCYM_NOTE 74
#define KICK_NOTE 75
//MIDI defines
#define NOTE_ON_CMD 0x90
#define NOTE_OFF_CMD 0x80
#define MAX_MIDI_VELOCITY 127
//MIDI baud rate
#define SERIAL_RATE 31250
//Program defines
//ALL TIME MEASURED IN MILLISECONDS
#define SIGNAL_BUFFER_SIZE 100
#define PEAK_BUFFER_SIZE 30
#define MAX_TIME_BETWEEN_PEAKS 20
#define MIN_TIME_BETWEEN_NOTES 50
//map that holds the mux slots of the piezos
unsigned short slotMap[NUM_PIEZOS];
//map that holds the respective note to each piezo
unsigned short noteMap[NUM_PIEZOS];
//map that holds the respective threshold to each piezo
unsigned short thresholdMap[NUM_PIEZOS];
//Ring buffers to store analog signal and peaks
short currentSignalIndex[NUM_PIEZOS];
short currentPeakIndex[NUM_PIEZOS];
unsigned short signalBuffer[NUM_PIEZOS][SIGNAL_BUFFER_SIZE];
unsigned short peakBuffer[NUM_PIEZOS][PEAK_BUFFER_SIZE];
boolean noteReady[NUM_PIEZOS];
unsigned short noteReadyVelocity[NUM_PIEZOS];
boolean isLastPeakZeroed[NUM_PIEZOS];
unsigned long lastPeakTime[NUM_PIEZOS];
unsigned long lastNoteTime[NUM_PIEZOS];
void setup()
{
Serial.begin(SERIAL_RATE);
//initialize globals
for(short i=0; i<NUM_PIEZOS; ++i)
{
currentSignalIndex[i] = 0;
currentPeakIndex[i] = 0;
memset(signalBuffer[i],0,sizeof(signalBuffer[i]));
memset(peakBuffer[i],0,sizeof(peakBuffer[i]));
noteReady[i] = false;
noteReadyVelocity[i] = 0;
isLastPeakZeroed[i] = true;
lastPeakTime[i] = 0;
lastNoteTime[i] = 0;
slotMap[i] = START_SLOT + i;
}
thresholdMap[0] = KICK_THRESHOLD;
thresholdMap[1] = RTOM_THRESHOLD;
thresholdMap[2] = RCYM_THRESHOLD;
thresholdMap[3] = LCYM_THRESHOLD;
thresholdMap[4] = SNARE_THRESHOLD;
thresholdMap[5] = LTOM_THRESHOLD;
noteMap[0] = KICK_NOTE;
noteMap[1] = RTOM_NOTE;
noteMap[2] = RCYM_NOTE;
noteMap[3] = LCYM_NOTE;
noteMap[4] = SNARE_NOTE;
noteMap[5] = LTOM_NOTE;
}
void loop()
{
unsigned long currentTime = millis();
for(short i=0; i<NUM_PIEZOS; ++i)
{
//get a new signal from analog read
unsigned short newSignal = analogRead(slotMap[i]);
signalBuffer[i][currentSignalIndex[i]] = newSignal;
//if new signal is 0
if(newSignal < thresholdMap[i])
{
if(!isLastPeakZeroed[i] && (currentTime - lastPeakTime[i]) > MAX_TIME_BETWEEN_PEAKS)
{
recordNewPeak(i,0);
}
else
{
//get previous signal
short prevSignalIndex = currentSignalIndex[i]-1;
if(prevSignalIndex < 0) prevSignalIndex = SIGNAL_BUFFER_SIZE-1;
unsigned short prevSignal = signalBuffer[i][prevSignalIndex];
unsigned short newPeak = 0;
//find the wave peak if previous signal was not 0 by going
//through previous signal values until another 0 is reached
while(prevSignal >= thresholdMap[i])
{
if(signalBuffer[i][prevSignalIndex] > newPeak)
{
newPeak = signalBuffer[i][prevSignalIndex];
}
//decrement previous signal index, and get previous signal
prevSignalIndex--;
if(prevSignalIndex < 0) prevSignalIndex = SIGNAL_BUFFER_SIZE-1;
prevSignal = signalBuffer[i][prevSignalIndex];
}
if(newPeak > 0)
{
recordNewPeak(i, newPeak);
}
}
}
currentSignalIndex[i]++;
if(currentSignalIndex[i] == SIGNAL_BUFFER_SIZE) currentSignalIndex[i] = 0;
}
}
void recordNewPeak(short slot, short newPeak)
{
isLastPeakZeroed[slot] = (newPeak == 0);
unsigned long currentTime = millis();
lastPeakTime[slot] = currentTime;
//new peak recorded (newPeak)
peakBuffer[slot][currentPeakIndex[slot]] = newPeak;
//1 of 3 cases can happen:
// 1) note ready - if new peak >= previous peak
// 2) note fire - if new peak < previous peak and previous peak was a note ready
// 3) no note - if new peak < previous peak and previous peak was NOT note ready
//get previous peak
short prevPeakIndex = currentPeakIndex[slot]-1;
if(prevPeakIndex < 0) prevPeakIndex = PEAK_BUFFER_SIZE-1;
unsigned short prevPeak = peakBuffer[slot][prevPeakIndex];
if(newPeak > prevPeak && (currentTime - lastNoteTime[slot])>MIN_TIME_BETWEEN_NOTES)
{
noteReady[slot] = true;
if(newPeak > noteReadyVelocity[slot])
noteReadyVelocity[slot] = newPeak;
}
else if(newPeak < prevPeak && noteReady[slot])
{
noteFire(noteMap[slot], noteReadyVelocity[slot]);
noteReady[slot] = false;
noteReadyVelocity[slot] = 0;
lastNoteTime[slot] = currentTime;
}
currentPeakIndex[slot]++;
if(currentPeakIndex[slot] == PEAK_BUFFER_SIZE) currentPeakIndex[slot] = 0;
}
void noteFire(unsigned short note, unsigned short velocity)
{
if(velocity > MAX_MIDI_VELOCITY)
velocity = MAX_MIDI_VELOCITY;
midiNoteOn(note, velocity);
midiNoteOff(note, velocity);
}
void midiNoteOn(byte note, byte midiVelocity)
{
Serial.write(NOTE_ON_CMD);
Serial.write(note);
Serial.write(midiVelocity);
}
void midiNoteOff(byte note, byte midiVelocity)
{
Serial.write(NOTE_OFF_CMD);
Serial.write(note);
Serial.write(midiVelocity);
}