-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmakeSpotCountInterval.m
62 lines (56 loc) · 2.9 KB
/
makeSpotCountInterval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
function [lbub,distributionSpotCount,spotNumEstimate]=makeSpotCountInterval(spotStatsOrTrainingSetRF,type)
%% ========================================================================
% Name: makeSpotCountInterval.m
% Version: 2.5.1 30 July 2014
% Author: Scott Rifkin
% Command: makeSpotCountInterval(spotStatsOrTrainingSetRF,type)
% Description:
% - Makes a distribution of spotCounts based on calibrated mean leaf
% probabilities and standard error of this mean
% - spotStatsOrTrainingSet is either a specimen from a spotStats file
% or a trainingSet.RF
% - type is either 'spotStats' or 'trainingSet'
%
% Files required: *spotStats.mat file or trainingSet*.mat file
% File name examples: cy5_Pos0_spotStats.mat
%
% Files generated: none
% Output: 3 variables.
% - a vector with the lower and upper bound of spot counts
% - the full distribution of these counts
% - a point estimate of the spot number
%
%% ========================================================================
if exist('Aro_parameters.m','file')
run('Aro_parameters.m');
else
nBoots=1000;
end;
width=spotStatsOrTrainingSetRF.intervalWidth;
%% Deal with manual classification if not making a training set
if strcmp(type,'spotStats')
manuallyCurated=spotStatsOrTrainingSetRF.classification(:,1)~=-1;
else
manuallyCurated=zeros(size(spotStatsOrTrainingSetRF.spotTreeProbs,1),1);
end;
%% Calculate the mean probabilities and the standard deviations
meanProbs=mean(spotStatsOrTrainingSetRF.spotTreeProbs(~manuallyCurated,:),2);
sdProbs=std(spotStatsOrTrainingSetRF.spotTreeProbs(~manuallyCurated,:),[],2)/sqrt(size(spotStatsOrTrainingSetRF.spotTreeProbs,2));
%% Generate the probabilities for bootstrapping
meanProbsWithError=normrnd(repmat(meanProbs,1,nBoots),repmat(sdProbs,1,nBoots),length(meanProbs),nBoots);
%% Calibrate the bootstrap probabilities and also the mean probabilities
calibratedMeanProbsWithError=calibrateProbabilities(meanProbsWithError);
calibratedMeanProbs=calibrateProbabilities(meanProbs);
%% Generate spot count distribution based on the calibrated probabilities
distributionSpotCount=sum(binornd(ones(size(calibratedMeanProbsWithError)),calibratedMeanProbsWithError),1);
if strcmp(type,'spotStats')%then manually classified ones were taken out
distributionSpotCount=distributionSpotCount+ sum(spotStatsOrTrainingSetRF.classification(:,1)==1);
end;
lbub=[prctile(distributionSpotCount,(100-width)/2),prctile(distributionSpotCount,(100-(100-width)/2))];
%% Calculate the spot number estimate, taking into account manual classification if necessary
spotNumEstimate=sum(calibratedMeanProbs>.5);
if sum(manuallyCurated)>0
disp(sum(manuallyCurated));
spotNumEstimate=spotNumEstimate+sum(spotStatsOrTrainingSetRF.classification(manuallyCurated,1)==1);
end;
end