-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
551 lines (469 loc) · 24.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# data_train.py
import re
#from resVAE.resvae import resVAE
#import resVAE.utils as cutils
#from resVAE.config import config
#import resVAE.reporting as report
from keras.models import Model # 泛型模型
from keras.layers import Dense, Input
from keras.models import load_model
import os
import json
import numpy as np
import pandas as pd
import csv # 调用数据保存文件
import pickle
from scipy import stats
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
#import TabularAutoEncoder
import VAE
#import tensorflow.compat.v1 as tf
#tf.disable_v2_behavior()
import tensorflow as tf
import torch
from torch import nn
#import torchvision
from torch.autograd import Variable
#import AutoEncoder
import math
import warnings
import AutoEncoder as AE
from time import time
from keras import layers
from keras import losses
from keras import regularizers
from keras import backend as K
warnings.filterwarnings("ignore")
def origin_data(data):
return data
def square_data(data):
return data ** 2
def log_data(data):
return np.log(data + 1e-5)
def radical_data(data):
return data ** (1 / 2)
def cube_data(data):
return data ** 3
# Only train regression model, save parameters to pickle file
def run(date,code, X_train, y_train, platform, model_type, data_type,HIDDEN_DIMENSION,toTrainAE,toTrainNN,AE_epoch_from_main=1000,NN_epoch_from_main=1000):
data_dict = {'origin_data': origin_data, 'square_data': square_data, 'log_data': log_data,
'radical_data': radical_data, 'cube_data': cube_data}
model_dict = {'LinearRegression': LinearRegression, 'LogisticRegression': LogisticRegression,
'L1': Lasso, 'L2': Ridge, 'RandomForest': RandomForestRegressor,'VAE':VAE.VAE,'AE':AE.Autoencoder}
with open(platform, 'r') as f:
gene_dict = json.load(f)
f.close()
count = 0
num = len(gene_dict)
gene_list = []
print('Now start training gene...')
data_train = data_dict[data_type](X_train)
gene_data_train = []
residuals_name = []
model=None
for (i,gene) in enumerate(gene_dict):
count += 1
#gene_data_train = []
#residuals_name = []
for residue in data_train.index:
if residue in gene_dict[gene]:
gene_data_train.append(data_train.loc[residue])
residuals_name.append(residue)
if len(gene_data_train) == 0:
# print('Contained Nan data, has been removed!')
continue
#gene_data_train = np.array(gene_data_train)
gene_list.append(gene)
print('No.'+str(i)+'Now training ' + gene + "\tusing " + model_type + "\ton " + data_type + "\t" + str(
int(count * 100 / num)) + '% ...')
#print("gene_data_train.shape[1]")
#print(np.array(gene_data_train).shape[1])
if count == 1:
with open(date+"_"+code + "_" + model_type + "_" + data_type + 'train_model.pickle', 'wb') as f:
pickle.dump((gene, model), f)
else:
with open(date+"_"+code + "_" + model_type + "_" + data_type + 'train_model.pickle', 'ab') as f:
pickle.dump((gene, model), f)
print('finish!')
gene_data_train = np.array(gene_data_train)#added line on 2-3
print("gene_data_train=")
print(gene_data_train)
#ae=None
autoencoder=None
fcn=None
if (model_type == "VAE" or model_type == "AE"or model_type == "MeiNN"):
encoding_dim = 400
latent_dim =400
if toTrainAE:
decoder_regularizer='var_l1'
decoder_regularizer_initial=0.0001
activ = 'relu'
latent_scale=5
l_rate=K.variable(0.01)
relu_thresh=0
decoder_bn=False
decoder_bias='last'
last_activ='tanh'#'softmax'
in_dim = 809
# 压缩特征维度至400维
mid_dim = math.sqrt(in_dim * encoding_dim)
q3_dim =math.sqrt(in_dim * mid_dim)
q1_dim=math.sqrt(encoding_dim * mid_dim)
decoder_shape=[encoding_dim,q1_dim,mid_dim,q3_dim]
input_shape=(809)
if decoder_regularizer == 'dot_weights':
dot_weights = np.zeros(shape=(latent_scale * latent_dim, latent_scale * latent_dim))
for s in range(latent_dim):
dot_weights[s * latent_scale:s * latent_scale + latent_scale,
s * latent_scale:s * latent_scale + latent_scale] = 1
# L1 regularizer with the scaling factor updateable through the l_rate variable (callback)
def variable_l1(weight_matrix):
return l_rate * K.sum(K.abs(weight_matrix))
# L2 regularizer with the scaling factor updateable through the l_rate variable (callback)
def variable_l2(weight_matrix):
return l_rate * K.sum(K.square(weight_matrix))
# Mixed L1 and L2 regularizer, updateable scaling. TODO: Consider implementing different scaling factors for L1 and L2 part
def variable_l1_l2(weight_matrix):
return l_rate * (K.sum(K.abs(weight_matrix)) + K.sum(K.square(weight_matrix))) * 0.5
# Dot product-based regularizer
def dotprod_weights(weights_matrix):
penalty_dot = l_rate * K.mean(K.square(K.dot(weights_matrix,
K.transpose(weights_matrix)) * dot_weights))
penalty_l1 = 0.000 * l_rate * K.sum(K.abs(weights_matrix))
return penalty_dot + penalty_l1
def dotprod(weights_matrix):
penalty_dot = l_rate * K.mean(K.square(K.dot(weights_matrix, K.transpose(weights_matrix))))
penalty_l1 = 0.000 * l_rate * K.sum(K.abs(weights_matrix))
return penalty_dot + penalty_l1
def dotprod_inverse(weights_matrix):
penalty_dot = 0.1 * K.mean(
K.square(K.dot(K.transpose(weights_matrix), weights_matrix) * dot_weights))
penalty_l1 = 0.000 * l_rate * K.sum(K.abs(weights_matrix))
return penalty_dot + penalty_l1
def relu_advanced(x):
return K.relu(x, threshold=relu_thresh)
if activ == 'relu':
activ = relu_advanced
# assigns the regularizer to the scaling factor. TODO: Look for more elegant method
if decoder_regularizer == 'var_l1':
reg = variable_l1
reg1 = variable_l1
elif decoder_regularizer == 'var_l2':
reg = variable_l2
reg1 = variable_l2
elif decoder_regularizer == 'var_l1_l2':
reg = variable_l1_l2
reg1 = variable_l1_l2
elif decoder_regularizer == 'l1':
reg = regularizers.l1(decoder_regularizer_initial)
reg1 = regularizers.l1(decoder_regularizer_initial)
elif decoder_regularizer == 'l2':
reg = regularizers.l2(decoder_regularizer_initial)
reg1 = regularizers.l2(decoder_regularizer_initial)
elif decoder_regularizer == 'l1_l2':
reg = regularizers.l1_l2(l1=decoder_regularizer_initial, l2=decoder_regularizer_initial)
reg1 = regularizers.l1_l2(l1=decoder_regularizer_initial, l2=decoder_regularizer_initial)
elif decoder_regularizer == 'dot':
reg = dotprod
reg1 = dotprod
elif decoder_regularizer == 'dot_weights':
reg1 = dotprod_weights
reg = dotprod
else:
reg = None
reg1 = None
# this is our input placeholder
input = Input(shape=(in_dim,))
# 编码层
encoded = Dense(q3_dim, activation='relu')(input)
encoded = Dense(mid_dim, activation='relu')(encoded)
encoded = Dense(q1_dim, activation='relu')(encoded)
encoder_output = Dense(encoding_dim,name="input_to_encoding")(encoded)
decoded = layers.Dense(q1_dim,
activation=activ,
name='Decoder1',
activity_regularizer=reg1)(encoder_output)
if decoder_bn:
decoded = layers.BatchNormalization()(decoded)
# adds layers to the decoder. See encoder layers
if len(decoder_shape) > 1:
for i in range(len(decoder_shape) - 1):
if decoder_bias == 'all':
decoded = layers.Dense(decoder_shape[i + 1],
activation=activ,
name='Dense_D' + str(i + 2),
use_bias=True,
activity_regularizer=reg)(decoded)
else:
decoded = layers.Dense(decoder_shape[i + 1],
activation=activ,
name='Dense_D' + str(i + 2),
use_bias=False,
kernel_regularizer=reg)(decoded)
if decoder_bn:
decoded = layers.BatchNormalization()(decoded)
if decoder_bias == 'none':
ae_outputs = layers.Dense(input_shape,
activation=last_activ,
use_bias=False)(decoded)
else:
ae_outputs = layers.Dense(input_shape,
activation=last_activ)(decoded)
# 解码层
#decoded = Dense(q1_dim, activation='relu')(encoder_output)
#decoded = Dense(mid_dim, activation='relu')(decoded)
#decoded = Dense(q3_dim, activation='relu')(decoded)
#decoded = Dense(in_dim, activation='tanh')(decoded)
# 构建自编码模型
autoencoder = Model(inputs=input, outputs=ae_outputs)
# 构建编码模型
encoder = Model(inputs=input, outputs=encoder_output)
# compile autoencoder
autoencoder.compile(optimizer='adam', loss='binary_crossentropy') #loss='mse'
# training
autoencoder.fit(gene_data_train.T, gene_data_train.T, epochs=AE_epoch_from_main, batch_size=79, shuffle=True)
print("AE finish_fitting")
autoencoder.save(date+'AE.h5')
print("AE finish saving model")
#loaded_autoencoder = load_model(date+'AE.h5')
'''
num_epochs = AE_epoch_from_main
batch_size = 79#gene_data_train.shape[0]#100#809
hidden_size = 10
dataset = gene_data_train.T#.flatten()#gene_data_train.view(gene_data_train.size[0], -1)
#dataset = gene_data_train # dsets.MNIST(root='../data',
# train=True,
# transform=transforms.ToTensor(),
# download=True)
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True)
print("gene_data_train.shape")
print(gene_data_train.shape)
print("dataset.shape")
print(dataset.shape)
ae = AE.Autoencoder(in_dim=gene_data_train.shape[0], h_dim=HIDDEN_DIMENSION)#in_dim=gene_data_train.shape[1]
if torch.cuda.is_available():
ae.cuda()
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(ae.parameters(), lr=0.001)
iter_per_epoch = len(data_loader)
data_iter = iter(data_loader)
# save fixed inputs for debugging
fixed_x = next(data_iter) # fixed_x, _ = next(data_iter)
mydir = 'E:/JI/4 SENIOR/2021 fall/VE490/ReGear-gyl/ReGear/test_sample/data/'
myfile = '%sreal_image_%s_batch%d.png' % (date,code, i + 1)
images_path = os.path.join(mydir, myfile)
torchvision.utils.save_image(Variable(fixed_x).data.cpu(), images_path)
fixed_x = AE.to_var(fixed_x.view(fixed_x.size(0), -1))
AE_loss_list=[]
for epoch in range(num_epochs):
t0 = time()
for i, (images) in enumerate(data_loader): # for i, (images, _) in enumerate(data_loader):
# flatten the image
images = AE.to_var(images.view(images.size(0), -1))
images = images.float()
out = ae(images)
loss = criterion(out, images)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(loss.item())
AE_loss_list.append(loss.item())
if (i + 1) % 100 == 0:
print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f Time: %.2fs'
% (epoch + 1, num_epochs, i + 1, len(dataset) // batch_size, loss.item(),
time() - t0)) # original version: loss.item() was loss.data[0]
if (epoch + 1) % 1 == 0:
# save the reconstructed images
fixed_x = fixed_x.float()
reconst_images = ae(fixed_x)
reconst_images = reconst_images.view(reconst_images.size(0), gene_data_train.shape[0]) # reconst_images = reconst_images.view(reconst_images.size(0), 1, 28, 28)
mydir = 'E:/JI/4 SENIOR/2021 fall/VE490/ReGear-gyl/ReGear/test_sample/data/'
myfile = '%sreconst_images_%s_batch%d_epoch%d.png' % (date,code, i+1, (epoch + 1))
reconst_images_path = os.path.join(mydir, myfile)
torchvision.utils.save_image(reconst_images.data.cpu(), reconst_images_path)
##################
model = model_dict[model_type]()
AE_loss_list_df = pd.DataFrame(AE_loss_list)
AE_loss_list_df.to_csv(
date + "_" + code + "_gene_level" + "(" + data_type + '_' + model_type + "_AE_loss).csv",
sep='\t')
if count == 1:
with open(date+"_"+code + "_" + model_type + "_" + data_type + 'train_model.pickle', 'wb') as f:
pickle.dump((gene, ae), f) # pickle.dump((gene, model), f)
else:
with open(date+"_"+code + "_" + model_type + "_" + data_type + 'train_model.pickle', 'ab') as f:
pickle.dump((gene, ae), f) # pickle.dump((gene, model), f)
torch.save(ae, date+'_auto-encoder.pth')#save the whole autoencoder network
'''
################################################################
#the following is the embedding to y prediction
if(toTrainNN):
#ae=torch.load(date+'_auto-encoder.pth')
loaded_autoencoder = load_model(date + 'AE.h5',custom_objects={'variable_l1': variable_l1,'relu_advanced':relu_advanced})
input_to_encoding_model = Model(inputs=loaded_autoencoder.input,
outputs=loaded_autoencoder.get_layer('input_to_encoding').output)
# embedding=ae.code(torch.tensor(gene_data_train.T).float())
embedding = input_to_encoding_model.predict(gene_data_train.T)
embedding_df = pd.DataFrame(embedding)
embedding_df.to_csv(date+"_"+code + "_gene_level" + "(" + data_type + '_' + model_type + "_embedding).txt", sep='\t')
print("embedding is ")
print(embedding)
print(embedding.shape)
in_dim = encoding_dim
# output dimension is 1
out_dim = 1
mid_dim = math.sqrt(in_dim * encoding_dim)
q3_dim = math.sqrt(in_dim * mid_dim)
q1_dim = math.sqrt(encoding_dim * mid_dim)
# this is our input placeholder
input = Input(shape=(in_dim,))
# 编码层
out_x = Dense(q3_dim, activation='relu')(input)
out_x = Dense(mid_dim, activation='relu')(out_x)
out_x = Dense(q1_dim, activation='relu')(out_x)
output = Dense(out_dim,activation='sigmoid',name="prediction")(out_x)#originally sigmoid
# build the fcn model
fcn = Model(inputs=input, outputs=output)
# compile fcn
fcn.compile(optimizer='adam', loss='binary_crossentropy') # loss='mse'
# training
fcn.fit(embedding, y_train.T, epochs=NN_epoch_from_main, batch_size=79, shuffle=True)
print("FCN finish_fitting")
fcn.save(date + 'FCN.h5')
print("FCN finish saving model")
'''
num_epochs = NN_epoch_from_main
batch_size = 79 # gene_data_train.shape[0]#100#809
hidden_size = 10
dataset = gene_data_train.T # .flatten()#gene_data_train.view(gene_data_train.size[0], -1)
# dataset = gene_data_train # dsets.MNIST(root='../data',
# train=True,
# transform=transforms.ToTensor(),
# download=True)
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True)
print("gene_data_train.shape")
print(gene_data_train.shape)
print("dataset.shape")
print(dataset.shape)
#ae = AE.Autoencoder(in_dim=gene_data_train.shape[0], h_dim=79 * 5) # in_dim=gene_data_train.shape[1]
fcn=AE.NN(in_dim=HIDDEN_DIMENSION, h_dim=1)
if torch.cuda.is_available():
fcn.cuda()
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(fcn.parameters(), lr=0.001)
iter_per_epoch = len(data_loader)
data_iter = iter(data_loader)
# save fixed inputs for debugging
fixed_x = next(data_iter) # fixed_x, _ = next(data_iter)
mydir = 'E:/JI/4 SENIOR/2021 fall/VE490/ReGear-gyl/ReGear/test_sample/data/'
myfile = '%snn_real_image_%s_batch%d.png' % (date,code, i + 1)
images_path = os.path.join(mydir, myfile)
torchvision.utils.save_image(Variable(fixed_x).data.cpu(), images_path)
fixed_x = AE.to_var(fixed_x.view(fixed_x.size(0), -1))
NN_loss_list=[]
for epoch in range(num_epochs):
t0 = time()
for i, (images) in enumerate(data_loader): # for i, (images, _) in enumerate(data_loader):
# flatten the image
images = AE.to_var(images.view(images.size(0), -1))
images = images.float()
#embedding
embedding_=ae.code(images)
out = fcn(embedding_)
#print("out at tain.py nn ")
#print(out)
#print("torch.tensor(y_train).float() at tain.py nn ")
#print(torch.tensor(y_train).float())
out=torch.reshape(out, (-1,))
loss = criterion(out, torch.tensor(y_train).float().T)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("training nn, epoch %d : loss= "% epoch)
print(loss.item())
NN_loss_list.append(loss.item())
if (i + 1) % 100 == 0:
print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f Time: %.2fs'
% (epoch + 1, num_epochs, i + 1, len(dataset) // batch_size, loss.item(),
time() - t0)) # original version: loss.item() was loss.data[0]
print("out after reshape")
print(out.shape)
print(out)
if (epoch + 1) % 1 == 0:
fixed_x = fixed_x.float()
embedding_out = ae.code(torch.tensor(fixed_x).float())
reconst_images = fcn(embedding_out)
reconst_images = reconst_images.view(reconst_images.size(0),
-1) # reconst_images = reconst_images.view(reconst_images.size(0), 1, 28, 28)
mydir = 'E:/JI/4 SENIOR/2021 fall/VE490/ReGear-gyl/ReGear/test_sample/data/'
myfile = '%snn_reconst_images_%s_batch%d_epoch%d.png' % (date,code, i + 1, (epoch + 1))
reconst_images_path = os.path.join(mydir, myfile)
torchvision.utils.save_image(reconst_images.data.cpu(), reconst_images_path)
torch.save(fcn, date+'_fully-connected-network.pth')
NN_loss_list_df = pd.DataFrame(NN_loss_list)
NN_loss_list_df.to_csv(
date + "_" + code + "_gene_level" + "(" + data_type + '_' + model_type + "_NN_loss).csv",
sep='\t')
'''
else:
model = model_dict[model_type]()
model.fit(gene_data_train.T, y_train)
if model_type == "RandomForest":
print("The number of residuals involved in the gene {} is {}".format(gene, len(gene_data_train)))
print("The feature importance is ")
print(model.feature_importances_)
print("The names of residuals are ")
print(residuals_name)
print(15 * '-')
if count == 1:
with open(date+"_"+code + "_" + model_type + "_" + data_type + 'train_model.pickle', 'wb') as f:
pickle.dump((gene, model), f)
else:
with open(date+"_"+code + "_" + model_type + "_" + data_type + 'train_model.pickle', 'ab') as f:
pickle.dump((gene, model), f)
print("Training finish!")
return (autoencoder,fcn)
def train_VAE(model,train_db,optimizer=tf.keras.optimizers.Adam(0.001),n_input=80):
for epoch in range(1000):
for step, x in enumerate(train_db):
x = tf.reshape(x, [-1, n_input])
with tf.GradientTape() as tape:
x_rec_logits, mean, log_var = model(x)
rec_loss = tf.losses.binary_crossentropy(x, x_rec_logits, from_logits=True)
rec_loss = tf.reduce_mean(rec_loss)
# compute kl divergence (mean, val) ~ N(0, 1)
kl_div = -0.5 * (log_var + 1 - mean ** 2 - tf.exp(log_var))
kl_div = tf.reduce_mean(kl_div) / x.shape[0]
# loss
loss = rec_loss + 1.0 * kl_div
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 10 == 0:
print(epoch, step, 'kl_div:', float(kl_div), 'rec_loss:', rec_loss)
if __name__ == '__main__':
# Parameter description:
# code: dataSet ID such as GSE66695 ( string )
# train_file: train data filename( .txt )
# label_file: train label filename(.txt)
# platform: Gene correspond to methylation characteristics( json file )
# model_type: type of regression model ( string )
# data_type: type of data ( string )
# example
code = "GSE66695"
train_file = "data_train.txt"
label_file = "label_train.txt"
platform = "platform.json"
model_type = "LinearRegression"
data_type = "origin_data"
train_data = pd.read_table(train_file, index_col=0)
train_label = pd.read_table(label_file, index_col=0).values.ravel()
run(code, train_data, train_label, platform, model_type, data_type)