forked from randaller/cnn-rtlsdr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data.py
69 lines (59 loc) · 2.55 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from rtlsdr import RtlSdr
import time, random, string, os
import numpy as np
import scipy.signal as signal
# def read_samples(sdr, freq):
# F_offset = 250000 # shifted tune to avoid DC
# sdr.center_freq = freq - F_offset
# time.sleep(0.06)
# iq_samples = sdr.read_samples(sample_rate * 0.25) # sample 1/4 sec
# fc1 = np.exp(-1.0j * 2.0 * np.pi * F_offset / sample_rate * np.arange(len(iq_samples))) # shift down 250kHz
# iq_samples = iq_samples * fc1
# return iq_samples
def read_samples(sdr, freq):
f_offset = 250000 # shifted tune to avoid DC
sdr.center_freq = freq - f_offset
time.sleep(0.06)
iq_samples = sdr.read_samples(1221376)
iq_samples = iq_samples[0:600000]
fc1 = np.exp(-1.0j * 2.0 * np.pi * f_offset / sample_rate * np.arange(len(iq_samples))) # shift down 250kHz
iq_samples = iq_samples * fc1
return iq_samples
def randomword(length):
letters = string.ascii_lowercase
return ''.join(random.choice(letters) for i in range(length))
def collect_samples(freq, classname):
os.makedirs("training_data/" + classname, exist_ok=True)
os.makedirs("testing_data/" + classname, exist_ok=True)
for i in range(0, 1000):
iq_samples = read_samples(sdr, freq)
iq_samples = signal.decimate(iq_samples, decimation_rate, zero_phase=True)
if (i < 750): # 75% train, 25% test
filename = "training_data/" + classname + "/samples-" + randomword(16) + ".npy"
else:
filename = "testing_data/" + classname + "/samples-" + randomword(16) + ".npy"
np.save(filename, iq_samples)
if not (i % 10): print(i / 10, "%", classname)
sdr = RtlSdr()
sdr.sample_rate = sample_rate = 2400000
decimation_rate = 48
sdr.err_ppm = 56 # change it to yours
sdr.gain = 'auto'
# collect_samples(422600000, "tetra")
collect_samples(95000000, "wfm")
collect_samples(104000000, "wfm")
collect_samples(942200000, "gsm")
collect_samples(147337500, "dmr")
collect_samples(49250000, "tv")
# collect "other" class training data
for freq in range(112000000, 174000000, 50000):
print('Sampling at', freq)
iq_samples = read_samples(sdr, freq)
iq_samples = signal.decimate(iq_samples, decimation_rate, zero_phase=True)
filename = "training_data/other/samples-" + randomword(16) + ".npy"
np.save(filename, iq_samples)
# 50/50 - train/test data
iq_samples = read_samples(sdr, freq)
iq_samples = signal.decimate(iq_samples, decimation_rate, zero_phase=True)
filename = "testing_data/other/samples-" + randomword(16) + ".npy"
np.save(filename, iq_samples)