-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathWrapper_warbler.R
152 lines (114 loc) · 4.5 KB
/
Wrapper_warbler.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#This code is associated with Zipkin et al. 2014 Ecology and Evolution
#The code loads and formats warbler count data and then fits a structured
#Dail-Madsen model using the associated JAGS code "warbler.R".
#The code produces a summary of the parameter estimates for the model and model diagnostics
#(e.g., traceplots and R-hat statisic)
#This code runs with R version 3.2.2
#The warbler model is a 2-stage, 2 sex model
#Data are summarized from capture-recapure data at Hubard Brook from 1998-2010 by Scott sillett
#Load the library rjags
library(rjags)
#Data - desired format: (site, year, stage)
#Read in data files for male and female birds
males<- read.table("males.csv", header=TRUE,sep=",",na.strings=TRUE)
females<- read.table("females.csv", header=TRUE,sep=",",na.strings=TRUE)
nSites=length(unique(males$Elevation))
nYears=length(unique(males$Year)) #length(unique(females$Year))
#Define the sex/stage groups as follows:
## 1=m,yearling; 2=f,yearling; 3=m,adult; 4=f,adult
## 5=m,unknown, 6=f,unknown
nStages=6
nReps=1
## Create an observation matrix y
y <- array(NA, dim=c(nSites,nYears,nStages),
dimnames=list(sort(unique(males$Elevation)),
sort(unique(males$Year)),c("MY","FY", "MA","FA", "MU","FU")) )
Sites=c("high", "low", "mid")
#Fill in the data matrix y with male data
for (i in 1:nSites) {
a=males[which(males$Elevation==Sites[i]),]
b=pmatch(a$Year,dimnames(y)[[2]])
y[i,b,1]=a$Yearling
y[i,b,3]=a$Older
y[i,b,5]=a$UNK
}
#Fill in the data matrix y with female data
for (i in 1:nSites) {
a=females[which(females$Elevation==Sites[i]),]
b=pmatch(a$Year,dimnames(y)[[2]])
y[i,b,2]=a$Yearling
y[i,b,4]=a$Older
y[i,b,6]=a$UNK
}
#Set the intital values to run the JAGS model
lamNew=rep(NA,4); omegaNew=rep(NA,4); gammaNew=rep(NA,2); QNew=rep(NA,2); CNew=rep(NA,2)
lamNew[1] <- 3 * 10 # Initial population density
lamNew[2] <- 3 * 10
lamNew[3] <- 3 * 10
lamNew[4] <- 3 * 10
omegaNew[1] <- 0.90 # Survival rate
omegaNew[2] <- 0.90
omegaNew[3] <- 0.90
omegaNew[4] <- 0.90
gammaNew[1] <- 3 * 10 # Recruitment rate
gammaNew[2] <- 3 * 10
QNew[1] <- 0.95 # Detection probability
QNew[2] <- 0.95
CNew[1] <- 0.95
CNew[2] <- 0.95
Knew <- 50
#NNew and GNew are empty arrays
#Fix SNew to some value greater than zero
NNew <- array(NA, dim=c(nSites,nYears,4),
dimnames=list(sort(unique(males$Elevation)),
sort(unique(males$Year)),c("MY","FY", "MA","FA")) )
# S = Survivors; G=NewRecruits
GNew <- array(NA, dim=c(nSites,nYears-1,4),
dimnames=list(sort(unique(males$Elevation)),
1986:2009,c("MY","FY", "MA","FA")) )
SNew <- array(2, dim=c(nSites,nYears-1,4),
dimnames=list(sort(unique(males$Elevation)),
1986:2009,c("MY","FY", "MA","FA")) )
ymax<- y[,,1:4]
#Add a big number to ymax for each stage to fill in the NNew matrix
NNew[1,11:25,] <- ymax[1,11:25,] +20
NNew[2,11:25,] <- ymax[2,11:25,] +20
NNew[3,1:25,] <- ymax[3,1:25,] +20
#Very important!!
#Make sure SNew+GNew=NNew or jags will not run!
GNew = NNew[,1:24,]-SNew
GNew[1:2,11,] = 20
SNew[1:2,1:11,] = NA
# Bundle data
Dat <- list(nSites=nSites, nYears=nYears, y=y) #nStages=nStages
# Set intial values
InitStage <- function() list(gamma=gammaNew, C=CNew, K=Knew,
omega=omegaNew, G=GNew, Q=QNew, S=SNew)
# Parameters to be monitored
ParsStage <- c("lambda", "gamma", "omega", "Q", "C", "K",
"Nall", "Ntt", "deviance")
load.module("dic")
# Sequential - start the adaptive phase of the model
StageBurnin1 <- jags.model(paste("warbler.r",sep=""),
Dat, InitStage, n.chains=3, n.adapt=20000)
#Keep Niter/Nthin samples after the initial burn in of 20000 (above)
Niter=20000
Nthin=10
StageSample1 <- coda.samples(StageBurnin1, ParsStage, n.iter=Niter, thin=Nthin)
#Print out a summary of the parameter estimates
summary(StageSample1)
#Examine model fit
#Look at the trace plots
plot(StageSample1)
##Calculate the Rhat statistic
library(coda)
gelman.diag(StageSample1)
g <- matrix(NA, nrow=nvar(StageSample1), ncol=2)
for (v in 1:nvar(StageSample1)) {
g[v,] <- gelman.diag(StageSample1[,v])$psrf
}
##Calculate the DIC of the model
chains=as.matrix(StageSample1)
dev=chains[,"deviance"]
######DIC
dic=mean(dev)+0.5*var(dev)