This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun_part_generator.py
104 lines (91 loc) · 3.85 KB
/
run_part_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from retry.api import retry_call
from tqdm import tqdm
from part_generator import Trainer, NanException
from datetime import datetime
def train_from_folder(
data = '../../data',
results_dir = '../../results',
models_dir = '../../models',
name = 'default',
new = False,
large_aug = False,
load_from = -1,
n_part = 1,
image_size = 128,
network_capacity = 16,
batch_size = 3,
gradient_accumulate_every = 5,
num_train_steps = 150000,
learning_rate_D = 2e-4,
learning_rate_G = 2e-4,
num_workers = None,
save_every = 1000,
generate = False,
num_image_tiles = 8,
trunc_psi = 0.75,
sparsity_penalty = 0.,
):
model = Trainer(
name,
results_dir,
models_dir,
batch_size = batch_size,
gradient_accumulate_every = gradient_accumulate_every,
n_part = n_part,
image_size = image_size,
network_capacity = network_capacity,
lr_D = learning_rate_D,
lr_G = learning_rate_G,
num_workers = num_workers,
save_every = save_every,
trunc_psi = trunc_psi,
sparsity_penalty = sparsity_penalty,
)
if not new:
model.load(load_from)
else:
model.clear()
model.set_data_src(data, large_aug)
if generate:
now = datetime.now()
timestamp = now.strftime("%m-%d-%Y_%H-%M-%S")
samples_name = f'generated-{timestamp}'
model.evaluate(samples_name, num_image_tiles, rgb=True)
print(f'sample images generated at {results_dir}/{name}/{samples_name}')
return
for _ in tqdm(range(num_train_steps - model.steps), mininterval=10., desc=f'{name}<{data}>'):
retry_call(model.train, tries=3, exceptions=NanException)
if _ % 50 == 0:
model.print_log()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default='../../data')
parser.add_argument("--results_dir", type=str, default='../../results')
parser.add_argument("--models_dir", type=str, default='../../models')
parser.add_argument("--name", type=str, default='default')
parser.add_argument("--load_from", type=int, default=-1)
parser.add_argument('--new', action='store_true')
parser.add_argument('--large_aug', action='store_true')
parser.add_argument('--generate', action='store_true')
parser.add_argument('--n_part', type=int, default=1)
parser.add_argument('--image_size', type=int, default=128)
parser.add_argument('--network_capacity', type=int, default=16)
parser.add_argument('--batch_size', type=int, default=3)
parser.add_argument('--gradient_accumulate_every', type=int, default=5)
parser.add_argument('--num_train_steps', type=int, default=150000)
parser.add_argument('--num_workers', type=int, default=None)
parser.add_argument('--save_every', type=int, default=1000)
parser.add_argument('--num_image_tiles', type=int, default=8)
parser.add_argument('--learning_rate_D', type=float, default=1e-4)
parser.add_argument('--learning_rate_G', type=float, default=1e-4)
parser.add_argument('--sparsity_penalty', type=float, default=0.)
parser.add_argument('--trunc_psi', type=float, default=1.)
args = parser.parse_args()
print(args)
train_from_folder(args.data, args.results_dir, args.models_dir, args.name, args.new, args.large_aug, args.load_from, args.n_part,
args.image_size, args.network_capacity, args.batch_size, args.gradient_accumulate_every, args.num_train_steps, args.learning_rate_D,
args.learning_rate_G, args.num_workers, args.save_every, args.generate, args.num_image_tiles, args.trunc_psi, args.sparsity_penalty)