-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy patheval_narrator.py
308 lines (275 loc) · 15.4 KB
/
eval_narrator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os.path as osp
import time
from collections import OrderedDict
import numpy as np
# https://github.com/numpy/numpy/issues/21079
try:
import numpy.distutils
numpy.distutils.__config__.blas_opt_info = np.distutils.__config__.blas_ilp64_opt_info
except Exception:
pass
from nlgeval import NLGEval
import torch
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
from lavila.data import datasets
from lavila.data.video_transforms import Permute, SpatialCrop, TemporalCrop
from lavila.models import models
from lavila.models.utils import inflate_positional_embeds
from lavila.utils import distributed as dist_utils
from lavila.utils.preprocess import generate_tokenizer
def decode_one(generated_ids, tokenizer):
# get the index of <EOS>
if tokenizer.eos_token_id == tokenizer.bos_token_id:
if tokenizer.eos_token_id in generated_ids[1:].tolist():
eos_id = generated_ids[1:].tolist().index(tokenizer.eos_token_id) + 1
else:
eos_id = len(generated_ids.tolist()) - 1
elif tokenizer.eos_token_id in generated_ids.tolist():
eos_id = generated_ids.tolist().index(tokenizer.eos_token_id)
else:
eos_id = len(generated_ids.tolist()) - 1
generated_text_str = tokenizer.tokenizer.decode(generated_ids[1:eos_id].tolist())
return generated_text_str
def get_args_parser():
parser = argparse.ArgumentParser(description='LAVILA 0-shot evaluations', add_help=False)
parser.add_argument('--dataset', default='ego4d', type=str,
choices=['ego4d'])
parser.add_argument('--root',
default='datasets/Ego4D/video_5min_chunks_288px/',
type=str, help='path to dataset root')
parser.add_argument('--metadata-val',
default='datasets/Ego4D/ego4d_val.pkl',
type=str, help='path to metadata file (val set)')
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--num-crops', default=1, type=int, help='number of crops in transforms')
parser.add_argument('--num-clips', default=1, type=int, help='number of clips (for untrimmed videos, eg. Charades)')
parser.add_argument('--clip-length', default=4, type=int, help='clip length')
parser.add_argument('--clip-stride', default=16, type=int, help='clip stride')
parser.add_argument('--sparse-sample', action='store_true', help='switch to sparse sampling')
parser.add_argument('--batch-size', default=16, type=int, help='batch_size')
# captioning options
parser.add_argument('--caption-sample', default='multinomial_sample',
choices=['multinomial_sample', 'beam_sample', 'group_beam_search'])
parser.add_argument('--caption-top-k', default=None, type=int, help='top-k sampling (predecessor of nucleus sampling)')
parser.add_argument('--caption-top-p', default=0.95, type=float, help='top-p sampling sampling (aka nucleus sampling)')
parser.add_argument('--caption-num-beams', default=3, type=int)
parser.add_argument('--caption-num-beam-groups', default=1, type=int)
parser.add_argument('--caption-temperature', default=0.7, type=float)
parser.add_argument('--caption-length-penalty', default=1.0, type=float)
parser.add_argument('--caption-num-return-sequences', default=1, type=int)
parser.add_argument('--caption-max-len', default=77, type=int)
parser.add_argument('--caption-disable-visual', action='store_true')
parser.add_argument('--caption-early-stop', action='store_true', help='early stopping to save computation')
parser.add_argument('--caption-output-filename', default='caption.txt', type=str)
# others
parser.add_argument('--eval-freq', default=1000, type=int,
help='percentage (1/eval_freq) of val data to evaluate (for fast prototyping)')
parser.add_argument('--print-freq', default=10, type=int)
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint')
parser.add_argument('--use-half', action='store_true')
return parser
def main(args):
if args.resume:
ckpt_path = args.resume
elif osp.isfile(osp.join(args.output_dir, 'checkpoint_best.pt')):
ckpt_path = osp.join(args.output_dir, 'checkpoint_best.pt')
else:
raise Exception('no checkpoint found')
ckpt = torch.load(ckpt_path, map_location='cpu')
# create model
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
old_args = ckpt['args']
print('=> creating model: {}'.format(old_args.model))
model = getattr(models, old_args.model)(
text_use_cls_token=old_args.use_cls_token,
project_embed_dim=old_args.project_embed_dim,
gated_xattn=False if 'gated_xattn' not in old_args else old_args.gated_xattn,
timesformer_gated_xattn=False if 'timesformer_gated_xattn' not in old_args else old_args.timesformer_gated_xattn,
timesformer_freeze_space=False if 'timesformer_freeze_space' not in old_args else old_args.timesformer_freeze_space,
freeze_lm_vclm=False if 'freeze_lm_vclm' not in old_args else old_args.freeze_lm_vclm,
freeze_visual_vclm=False if 'freeze_visual_vclm' not in old_args else old_args.freeze_visual_vclm,
num_frames=args.clip_length,
drop_path_rate=0,
)
model.cuda()
if 'TIMESFORMER' in old_args.model or 'EGOVLP' in old_args.model:
# inflate weight
print('=> inflating PE in models due to different frame numbers')
state_dict = inflate_positional_embeds(
model.state_dict(), state_dict,
num_frames=args.clip_length,
load_temporal_fix='bilinear',
)
model.load_state_dict(state_dict, strict=True)
print("=> loaded resume checkpoint '{}' (epoch {}, best_metric = {})".format(args.resume, ckpt['epoch'], ckpt['best_acc1']))
torch.backends.cudnn.benchmark = True
tokenizer = generate_tokenizer(old_args.model)
crop_size = 224 if '336PX' not in old_args.model else 336
if args.num_crops == 1 and args.num_clips == 1:
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
transforms.CenterCrop(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if ('OPENAI' not in old_args.model) else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
])
else:
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if ('OPENAI' not in old_args.model) else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
TemporalCrop(frames_per_clip=args.clip_length, stride=args.clip_length),
SpatialCrop(crop_size=crop_size, num_crops=args.num_crops),
])
val_dataset = datasets.VideoCaptionDatasetCLIP(
args.dataset,
args.root,
args.metadata_val,
transform=val_transform,
is_training=False,
tokenizer=tokenizer,
clip_length=args.clip_length,
clip_stride=args.clip_stride,
sparse_sample=False,
subsample_stride=args.eval_freq,
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
validate_caption(val_loader, model, tokenizer, args.caption_output_filename, use_half=args.use_half)
def validate_caption(val_loader, model, tokenizer, output_filename='caption.txt', use_half=False):
model.eval()
if args.use_half:
model = model.half()
nlgeval = NLGEval()
f = open(output_filename, 'w')
ppls_all = []
ppls_with_teacher_all = []
reference = []
hypothesis = []
end_time = time.time()
id_offset = 0
print('=> start forwarding')
with torch.no_grad():
for i, inputs in enumerate(val_loader):
if i % args.print_freq == 0:
print('finish batch {}/{} in {} sec'.format(i, len(val_loader), time.time() - end_time))
end_time = time.time()
images = inputs[0].cuda(non_blocking=True)
if use_half:
images = images.half()
target = inputs[1].cuda(non_blocking=True)
# encode images
image_features = dist_utils.get_model(model).encode_image(images)
# teacher forcing (to get standard ppl metric)
generated_text_ids_with_teacher, ppls_with_teacher = dist_utils.get_model(model).generate(
image_features,
tokenizer,
target=target,
max_text_length=args.caption_max_len,
top_k=args.caption_top_k,
top_p=args.caption_top_p,
teacher_forcing=True,
early_stopping=args.caption_early_stop,
)
if args.caption_sample == 'multinomial_sample':
assert args.caption_num_beam_groups == 1
generated_text_ids, ppls = dist_utils.get_model(model).generate(
image_features,
tokenizer,
target=target.repeat_interleave(args.caption_num_return_sequences, dim=0),
max_text_length=args.caption_max_len,
top_k=args.caption_top_k,
top_p=args.caption_top_p,
num_return_sequences=args.caption_num_return_sequences,
temperature=args.caption_temperature,
early_stopping=args.caption_early_stop,
)
elif args.caption_sample == 'beam_sample':
assert args.caption_num_beam_groups == 1
generated_text_ids, ppls = dist_utils.get_model(model).beam_sample(
image_features,
tokenizer,
target=target,
max_text_length=args.caption_max_len,
top_k=args.caption_top_k,
top_p=args.caption_top_p,
temperature=args.caption_temperature,
length_penalty=args.caption_length_penalty,
num_beams=args.caption_num_beams,
num_return_sequences=args.caption_num_return_sequences,
early_stopping=args.caption_early_stop,
)
elif args.caption_sample == 'group_beam_search':
assert args.caption_num_beam_groups > 1 and args.caption_num_beams % args.caption_num_beam_groups == 0
generated_text_ids, ppls = dist_utils.get_model(model).group_beam_search(
image_features,
tokenizer,
target=target if not args.caption_no_gt else None,
max_text_length=args.caption_max_len,
top_k=args.caption_top_k,
top_p=args.caption_top_p,
temperature=args.caption_temperature,
length_penalty=args.caption_length_penalty,
num_beams=args.caption_num_beams,
num_beam_groups=args.caption_num_beam_groups,
num_return_sequences=args.caption_num_return_sequences,
early_stopping=args.caption_early_stop,
)
else:
raise NotImplementedError
ppls_all.append(ppls.reshape(-1, args.caption_num_return_sequences).mean(1))
ppls_with_teacher_all.append(ppls_with_teacher)
for j in range(generated_text_ids.shape[0] // args.caption_num_return_sequences):
for k in range(args.caption_num_return_sequences):
jj = j * args.caption_num_return_sequences + k
generated_text_str = decode_one(generated_text_ids[jj], tokenizer)
gt_text = decode_one(target[j], tokenizer)
generated_text_str_with_teacher = decode_one(generated_text_ids_with_teacher[j], tokenizer)
from transformers import BertTokenizer
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
gt_text = bert_tokenizer.decode(bert_tokenizer(gt_text)['input_ids'][1:-1])
generated_text_str = bert_tokenizer.decode(bert_tokenizer(generated_text_str)['input_ids'][1:-1])
generated_text_str_with_teacher = bert_tokenizer.decode(bert_tokenizer(generated_text_str_with_teacher)['input_ids'][1:-1])
reference.append(gt_text)
hypothesis.append(generated_text_str)
s1 = '[{:6d}] Groundtruth | | {}'.format(id_offset + j, gt_text)
s2 = '[{:6d}] Generated | PPL : {:9.3f} | {}'.format(id_offset + j, ppls[jj], generated_text_str)
s3 = '[{:6d}] Generated (w/. teacher) | PPL : {:9.3f} | {}'.format(id_offset + j, ppls_with_teacher[j], generated_text_str_with_teacher)
for s in [s1, s2, s3]:
# if i % args.print_freq == 0:
# print(s)
f.write('{} \n'.format(s))
id_offset += generated_text_ids.shape[0] // args.caption_num_return_sequences
ppls_with_teacher_all = torch.cat(ppls_with_teacher_all, dim=0)
ppls_all = torch.cat(ppls_all, dim=0)
print('PPL (w/. teacher) = {:9.3f}'.format(ppls_with_teacher_all.mean().item()))
print('PPL (w/o. teacher) = {:9.3f}'.format(ppls_all.mean().item()))
f.write('PPL (w/. teacher) = {:9.3f} \n'.format(ppls_with_teacher_all.mean().item()))
f.write('PPL (w/o. teacher) = {:9.3f} \n'.format(ppls_all.mean().item()))
print('Avg length for reference: {:9.3f}'.format(sum(map(lambda sentence: len(sentence.split(' ')), reference)) / len(reference)))
print('Avg length for hypothesis: {:9.3f}'.format(sum(map(lambda sentence: len(sentence.split(' ')), hypothesis)) / len(hypothesis)))
f.write('Avg length for reference: {:9.3f} \n'.format(sum(map(lambda sentence: len(sentence.split(' ')), reference)) / len(reference)))
f.write('Avg length for hypothesis: {:9.3f} \n'.format(sum(map(lambda sentence: len(sentence.split(' ')), hypothesis)) / len(hypothesis)))
print('=> Calling NLGEval')
f.write('=> Calling NLGEval\n')
metrics_dict = nlgeval.compute_metrics([reference], hypothesis)
for k in metrics_dict:
print('{:16s} = {:9.3f}'.format(k, metrics_dict[k]))
f.write('{:16s} = {:9.3f} \n'.format(k, metrics_dict[k]))
f.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser('lavila 0-shot evaluations', parents=[get_args_parser()])
args = parser.parse_args()
main(args)