-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy patheval_zeroshot.py
389 lines (347 loc) · 18 KB
/
eval_zeroshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import numpy as np
import os.path as osp
import time
from collections import OrderedDict
import pandas as pd
import torch
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
from sklearn.metrics import confusion_matrix
from lavila.data import datasets
from lavila.data.video_transforms import Permute, SpatialCrop, TemporalCrop
from lavila.models import models
from lavila.models.utils import inflate_positional_embeds
from lavila.utils import distributed as dist_utils
from lavila.utils.evaluation import accuracy, get_mean_accuracy
from lavila.utils.evaluation_egomcq import egomcq_accuracy_metrics
from lavila.utils.evaluation_ek100mir import (calculate_k_counts, calculate_IDCG, calculate_mAP, calculate_nDCG)
from lavila.utils.evaluation_charades import charades_map
from lavila.utils.preprocess import generate_label_map, generate_tokenizer
def get_args_parser():
parser = argparse.ArgumentParser(description='LAVILA 0-shot evaluations', add_help=False)
parser.add_argument('--dataset', default='ek100_mir', type=str,
choices=['ek100_cls', 'ek100_mir', 'charades_ego', 'egtea', 'ego4d_mcq'])
parser.add_argument('--root',
default='datasets/EK100/video_ht256px/',
type=str, help='path to dataset root')
parser.add_argument('--metadata-val',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test.csv',
type=str, help='path to metadata file (val set)')
parser.add_argument('--relevancy-path',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/caption_relevancy_EPIC_100_retrieval_test.pkl',
type=str, help='path to relevancy matrix (val set)')
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--num-crops', default=1, type=int, help='number of crops in transforms')
parser.add_argument('--num-clips', default=1, type=int, help='number of clips (for untrimmed videos, eg. Charades)')
parser.add_argument('--clip-length', default=4, type=int, help='clip length')
parser.add_argument('--clip-stride', default=16, type=int, help='clip stride')
parser.add_argument('--sparse-sample', action='store_true', help='switch to sparse sampling')
parser.add_argument('--batch-size', default=16, type=int, help='batch_size')
parser.add_argument('--cls-use-template', action='store_true', help='use prompt in 0-shot classification')
parser.add_argument('--print-freq', default=100, type=int)
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint')
parser.add_argument('--use-half', action='store_true')
return parser
def main(args):
if args.resume:
ckpt_path = args.resume
elif osp.isfile(osp.join(args.output_dir, 'checkpoint_best.pt')):
ckpt_path = osp.join(args.output_dir, 'checkpoint_best.pt')
else:
raise Exception('no checkpoint found')
ckpt = torch.load(ckpt_path, map_location='cpu')
# create model
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
old_args = ckpt['args']
print('=> creating model: {}'.format(old_args.model))
model = getattr(models, old_args.model)(
text_use_cls_token=old_args.use_cls_token,
project_embed_dim=old_args.project_embed_dim,
gated_xattn=False if 'gated_xattn' not in old_args else old_args.gated_xattn,
timesformer_gated_xattn=False if 'timesformer_gated_xattn' not in old_args else old_args.timesformer_gated_xattn,
timesformer_freeze_space=False if 'timesformer_freeze_space' not in old_args else old_args.timesformer_freeze_space,
freeze_lm_vclm=False if 'freeze_lm_vclm' not in old_args else old_args.freeze_lm_vclm,
freeze_visual_vclm=False if 'freeze_visual_vclm' not in old_args else old_args.freeze_visual_vclm,
num_frames=args.clip_length,
drop_path_rate=0,
)
model.cuda()
if 'TIMESFORMER' in old_args.model or 'EGOVLP' in old_args.model:
# inflate weight
print('=> inflating PE in models due to different frame numbers')
state_dict = inflate_positional_embeds(
model.state_dict(), state_dict,
num_frames=args.clip_length,
load_temporal_fix='bilinear',
)
model.load_state_dict(state_dict, strict=True)
print("=> loaded resume checkpoint '{}' (epoch {}, best_metric = {})".format(args.resume, ckpt['epoch'], ckpt['best_acc1']))
torch.backends.cudnn.benchmark = True
if args.dataset in ['ek100_cls', 'charades_ego', 'egtea']:
labels, mapping_vn2act = generate_label_map(args.dataset)
else:
mapping_vn2act = None
tokenizer = generate_tokenizer(old_args.model)
crop_size = 224 if '336PX' not in old_args.model else 336
if args.num_crops == 1 and args.num_clips == 1:
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
transforms.CenterCrop(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if ('OPENAI' not in old_args.model) else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
])
else:
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if ('OPENAI' not in old_args.model) else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
TemporalCrop(frames_per_clip=args.clip_length, stride=args.clip_length),
SpatialCrop(crop_size=crop_size, num_crops=args.num_crops),
])
val_dataset = datasets.get_downstream_dataset(
val_transform, tokenizer, args, subset='val', label_mapping=mapping_vn2act,
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
if args.cls_use_template:
templates = ['#C C {}', '#C {}']
else:
templates = ['{}']
if args.dataset in ['ek100_cls', 'charades_ego', 'egtea']:
preds, targets = validate_zeroshot(val_loader, templates, labels, model, tokenizer)
if args.dataset == 'ek100_cls':
if args.use_half:
preds = preds.float()
top1, top5 = accuracy(preds, targets, topk=(1, 5))
print('top1 = {:.3f}'.format(top1.item()))
print('top5 = {:.3f}'.format(top5.item()))
elif args.dataset == 'charades_ego':
preds, targets = preds.numpy(), targets.numpy()
m_ap, _, _ = charades_map(preds, targets)
print('mAP = {:.3f}'.format(m_ap))
elif args.dataset == 'egtea':
preds, targets = preds.numpy(), targets.numpy()
print(preds.shape, targets.shape)
cm = confusion_matrix(targets, preds.argmax(axis=1))
mean_class_acc, acc = get_mean_accuracy(cm)
print('Mean Acc. = {:.3f}, Top-1 Acc. = {:.3f}'.format(mean_class_acc, acc))
if args.dataset == 'ek100_mir':
val_dataset = datasets.VideoCaptionDatasetCLIP(
'ek100_mir',
args.root,
args.metadata_val,
transform=val_transform, is_training=False,
tokenizer=tokenizer,
clip_length=args.clip_length,
clip_stride=args.clip_stride,
sparse_sample=False
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False
)
similarity_matrix = get_similarity_matrix(val_loader, model, print_freq=args.print_freq, use_half=args.use_half)
similarity_matrix = (similarity_matrix + 1) / 2
video_id = pd.read_csv(args.metadata_val).values[:, 0]
text_id = pd.read_csv(args.metadata_val.replace("test.csv", "test_sentence.csv")).values[:, 0]
indexes = [video_id.tolist().index(elem) for elem in text_id]
similarity_matrix = similarity_matrix[:, indexes]
print(similarity_matrix.shape)
rel_matrix = pd.read_pickle(args.relevancy_path)
vis_map = calculate_mAP(similarity_matrix, rel_matrix)
txt_map = calculate_mAP(similarity_matrix.T, rel_matrix.T)
print('mAP: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_map, txt_map, (vis_map + txt_map) / 2))
vis_k_counts = calculate_k_counts(rel_matrix)
txt_k_counts = calculate_k_counts(rel_matrix.T)
vis_IDCG = calculate_IDCG(rel_matrix, vis_k_counts)
txt_IDCG = calculate_IDCG(rel_matrix.T, txt_k_counts)
vis_nDCG = calculate_nDCG(similarity_matrix, rel_matrix, k_counts=vis_k_counts, IDCG=vis_IDCG)
txt_nDCG = calculate_nDCG(similarity_matrix.T, rel_matrix.T, k_counts=txt_k_counts, IDCG=txt_IDCG)
print('nDCG: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_nDCG, txt_nDCG, (vis_nDCG + txt_nDCG) / 2))
if args.dataset == 'ego4d_mcq':
val_dataset = datasets.VideoCaptionDatasetMCQ(
args.dataset,
args.root,
args.metadata_val,
transform=val_transform, is_training=False,
tokenizer=tokenizer,
clip_length=args.clip_length,
clip_stride=args.clip_stride,
sparse_sample=False,
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False
)
validate_mcq(val_loader, model, use_half=args.use_half)
def validate_zeroshot(val_loader, templates, labels, model, tokenizer):
model.eval()
if args.use_half:
model = model.half()
all_outputs = []
all_targets = []
all_vis_features = []
print('=> encoding captions')
with torch.no_grad():
text_features = []
for label in labels:
if isinstance(label, list):
texts = [tmpl.format(lbl) for tmpl in templates for lbl in label]
else:
texts = [tmpl.format(label) for tmpl in templates]
texts = tokenizer(texts)
if isinstance(texts, tuple):
# Bert-style tokenizer will output both ids and mask
texts, masks = texts
texts = texts.cuda(non_blocking=True)
masks = masks.cuda(non_blocking=True)
else:
texts = texts.cuda(non_blocking=True)
masks = None
texts = texts.view(-1, 77).contiguous()
masks = masks.view(-1, 77).contiguous() if masks is not None else None
if masks is not None:
class_embeddings = dist_utils.get_model(model).encode_text(texts, attention_mask=masks)
else:
class_embeddings = dist_utils.get_model(model).encode_text(texts)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embeddings = class_embeddings.mean(dim=0)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
text_features.append(class_embeddings)
text_features = torch.stack(text_features, dim=0)
print('=> start forwarding')
end_time = time.time()
for i, (images, target) in enumerate(val_loader):
if i % args.print_freq == 0:
print('finish batch {}/{} in {} sec'.format(i, len(val_loader), time.time() - end_time))
end_time = time.time()
if isinstance(images, torch.Tensor):
images = images.cuda(non_blocking=True)
if args.use_half:
images = images.half()
target = target.cuda(non_blocking=True)
# encode images
image_features = dist_utils.get_model(model).encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
all_vis_features.append(image_features)
# cosine similarity as logits
logits_per_image = image_features @ text_features.t()
# logits_per_image = torch.softmax(logits_per_image, dim=1)
else:
target = target.cuda(non_blocking=True)
images_list = images
logits_all_clips = []
for images in images_list:
images = images.cuda(non_blocking=True)
if args.use_half:
images = images.half()
image_features = dist_utils.get_model(model).encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
logits_per_image = image_features @ text_features.t()
logits_all_clips.append(logits_per_image)
logits_all_clips = torch.stack(logits_all_clips, dim=0)
logits_per_image = logits_all_clips.max(0).values
# logits_per_image = logits_all_clips.mean(0)
logits_per_image = torch.softmax(logits_per_image, dim=1)
all_outputs.append(logits_per_image.cpu())
all_targets.append(target.cpu())
return torch.cat(all_outputs), torch.cat(all_targets)
def get_similarity_matrix(val_loader, model, print_freq=100, use_half=False):
model.eval()
if use_half:
model = model.half()
all_text_embed = []
all_video_embed = []
with torch.no_grad():
print('=> encoding visual and textual')
for i, inputs in enumerate(val_loader):
if i % print_freq == 0:
print('finish batch {}/{}'.format(i, len(val_loader)))
frames = inputs[0].cuda(non_blocking=True)
if use_half:
frames = frames.half()
texts = inputs[1].cuda(non_blocking=True)
if len(inputs) == 4:
masks = inputs[2].cuda(non_blocking=True)
else:
masks = None
# encode images
image_features = dist_utils.get_model(model).encode_image(frames)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
all_video_embed.append(image_features.cpu().numpy())
if texts.ndim == 3:
is_multiple_narrations = True
texts = texts.view(-1, texts.shape[-1])
else:
is_multiple_narrations = False
if masks is not None:
text_features = dist_utils.get_model(model).encode_text(texts, attention_mask=masks)
else:
text_features = dist_utils.get_model(model).encode_text(texts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
all_text_embed.append(text_features.cpu().numpy())
all_text_embed = np.vstack(all_text_embed)
all_video_embed = np.vstack(all_video_embed)
similarity_matrix = np.matmul(all_video_embed, all_text_embed.T)
if is_multiple_narrations:
similarity_matrix = similarity_matrix.reshape(all_video_embed.shape[0], all_video_embed.shape[0], -1)
return similarity_matrix
def validate_mcq(val_loader, model, use_half=False):
model.eval()
if use_half:
model.half()
with torch.no_grad():
print('=> start forwarding')
all_preds = []
all_gts = []
all_types = []
end_time = time.time()
for i, inputs in enumerate(val_loader):
if i % args.print_freq == 0:
print('finish batch {}/{} in {} sec'.format(i, len(val_loader), time.time() - end_time))
end_time = time.time()
texts_query = inputs[0].cuda(non_blocking=True)
frames_options = inputs[1].cuda(non_blocking=True)
if use_half:
frames_options = frames_options.half()
answer = inputs[3]
q_type = inputs[4]
if len(inputs) == 7:
masks_query = inputs[5].cuda(non_blocking=True)
else:
masks_query = None
batch_size = frames_options.shape[0]
frames_options = frames_options.view(-1, *frames_options.shape[2:])
image_features = dist_utils.get_model(model).encode_image(frames_options)
image_features = image_features.view(batch_size, -1, *image_features.shape[1:])
if masks_query is not None:
query_features = dist_utils.get_model(model).encode_text(texts_query, attention_mask=masks_query)
else:
query_features = dist_utils.get_model(model).encode_text(texts_query)
all_gts.append(answer)
all_types.append(q_type)
for j in range(batch_size):
similarity_matrix = torch.matmul(query_features[j], image_features[j].T)
similarity_matrix = similarity_matrix.cpu().detach()
all_preds.append(similarity_matrix)
all_preds = torch.stack(all_preds)
all_gts = torch.cat(all_gts)
all_types = torch.cat(all_types)
metrics = egomcq_accuracy_metrics(all_preds, all_gts, all_types)
print(metrics)
if __name__ == '__main__':
parser = argparse.ArgumentParser('lavila 0-shot evaluations', parents=[get_args_parser()])
args = parser.parse_args()
main(args)