This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain.py
295 lines (250 loc) · 8.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import logging
from functools import partial
from typing import Set
import torch
torch.manual_seed(0)
logging.getLogger().setLevel(logging.INFO)
def prepare_data(batch, device):
x = batch["input_seq"].to(device)
y = batch["target_seq"].to(device)
ext = batch["extended"]
rel = batch["rel_mask"].to(device) if "rel_mask" in batch else None
child = batch["child_mask"].to(device) if "child_mask" in batch else None
paths = batch["root_paths"].to(device) if "root_paths" in batch else None
return x, y, ext, rel, child, paths
def build_dataloader(dataset, batch_size, collate_fn, train_split=0.90):
train_len = int(train_split * len(dataset))
train_dataset, val_dataset = torch.utils.data.random_split(
dataset, lengths=([train_len, len(dataset) - train_len])
)
logging.info("Batch size: {}".format(batch_size))
logging.info(
"Train / val split ({}%): {} / {}".format(
100 * train_split, len(train_dataset), len(val_dataset)
)
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
collate_fn=collate_fn,
num_workers=16,
shuffle=True,
drop_last=True,
pin_memory=False,
)
logging.info("len(train_dataloader) = {}".format(len(train_dataloader)))
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=int(batch_size / 4),
collate_fn=collate_fn,
num_workers=16,
shuffle=True,
drop_last=True,
pin_memory=False,
)
logging.info("len(val_dataloader) = {}".format(len(val_dataloader)))
return train_dataloader, val_dataloader
def build_test_dataloader(test_dataset, batch_size, collate_fn):
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=batch_size,
collate_fn=collate_fn,
num_workers=16,
shuffle=False,
drop_last=True,
pin_memory=True,
)
logging.info("len(test_dataloader) = {}".format(len(test_dataloader)))
return test_dataloader
def build_metrics(loss_fn, unk_idx_set: Set[int], pad_idx, ids_str):
from ignite.metrics import Loss, TopKCategoricalAccuracy
def strip(out, id_str="all"):
if id_str != "all":
ids = out[id_str]
y_pred = out["y_pred"][ids]
y = out["y"][ids]
else:
y_pred = out["y_pred"]
y = out["y"]
idx = y != pad_idx
return y_pred[idx], y[idx]
def topk_trans(id_str):
def wrapped(out):
y_pred, y = strip(out, id_str)
for idx in unk_idx_set: # non-existing tokens
y[y == idx] = -2
return y_pred, y
return wrapped
def topk_ex_unk_trans(id_str):
def wrapped(out):
y_pred, y = strip(out, id_str)
idx_tensor = torch.ones(y.shape, dtype=torch.bool)
for idx in unk_idx_set:
idx_tensor[y == idx] = False
return y_pred[idx_tensor], y[idx_tensor]
return wrapped
def loss_trans():
def wrapped(out):
return strip(out)
return wrapped
metrics = {"_loss": Loss(loss_fn, loss_trans())}
for id_str in ["attr_ids", "leaf_ids"] + ["all"]:
# reporting metrics for attr and leaf only
metrics["{}_acc".format(id_str)] = TopKCategoricalAccuracy(
1, topk_trans(id_str)
)
return metrics
def build_evaluator(model, metrics, metrics_fp, device, pad_idx):
from ignite.contrib.handlers import ProgressBar
from ignite.engine import Engine, Events
@Engine
@torch.no_grad()
def evaluator(engine, batch):
model.eval()
x, y, ext, rel, child, paths = prepare_data(batch, device)
y_pred = model(x, y, ext, rel, child, paths)
# here we pad out the indices that have been evaluated before
for i, ext_i in enumerate(ext):
y[i][:ext_i] = pad_idx
res = {"y_pred": y_pred.view(-1, y_pred.size(-1)), "y": y.view(-1)}
res.update(batch["ids"])
return res
for name, metric in metrics.items():
metric.attach(evaluator, name)
ProgressBar(bar_format="").attach(evaluator, metric_names=[])
@evaluator.on(Events.COMPLETED)
def log_val_metrics(engine):
metrics = engine.state.metrics
metrics = {name: "{:.4f}".format(num) for name, num in metrics.items()}
# mrr
metrics_str = json.dumps(metrics, indent=2, sort_keys=True)
logging.info("val metrics: {}".format(metrics_str))
with open(metrics_fp, "a") as fout:
fout.write(metrics_str)
fout.write("\n")
return evaluator
def build_trainer(
model,
loss_fn,
optimizer,
train_dataloader,
val_dataloader,
run_dir,
validator,
device,
score_fn=lambda engine: engine.state.metrics["all_acc"],
):
from ignite.contrib.handlers import ProgressBar
from ignite.engine import Engine, Events
from ignite.handlers import EarlyStopping, ModelCheckpoint, TerminateOnNan
from ignite.metrics import RunningAverage
@Engine
def trainer(engine, batch):
model.train()
x, y, ext, rel, child, paths = prepare_data(batch, device)
loss = model(x, y, ext, rel, child, paths, return_loss=True)
loss = loss.sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()
return {"batchloss": loss.item()}
# # validation first
# @trainer.on(Events.STARTED)
# def validate(engine):
# validator.run(val_dataloader)
RunningAverage(output_transform=lambda out: out["batchloss"]).attach(
trainer, "batchloss"
)
ProgressBar(bar_format="").attach(trainer, metric_names=["batchloss"])
# store the model before validation
pre_model_handler = ModelCheckpoint(
dirname=run_dir,
filename_prefix="pre",
n_saved=100, # save all bests
save_interval=1,
require_empty=False,
)
trainer.add_event_handler(
Events.EPOCH_COMPLETED, pre_model_handler, {"model": model}
)
# validation
@trainer.on(Events.EPOCH_COMPLETED)
def validate(engine):
validator.run(val_dataloader)
# terminate on NaN
trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())
# store the best model
best_model_handler = ModelCheckpoint(
dirname=run_dir,
filename_prefix="best",
n_saved=100, # save all bests
score_name="val_acc",
score_function=score_fn,
require_empty=False,
)
validator.add_event_handler(Events.COMPLETED, best_model_handler, {"model": model})
# Early stopping
es_handler = EarlyStopping(patience=5, score_function=score_fn, trainer=trainer)
validator.add_event_handler(Events.COMPLETED, es_handler)
return trainer
def train(
model,
vocab,
dataset,
metrics_fp,
loss_fn,
lr,
run_dir,
batch_size,
max_epochs,
device,
ids_str,
):
collate_fn = partial(dataset.collate, pad_idx=vocab.pad_idx)
train_dataloader, val_dataloader = build_dataloader(
dataset, batch_size=batch_size, collate_fn=collate_fn
)
metrics = build_metrics(loss_fn, vocab.unk_idx_set, vocab.pad_idx, ids_str)
# run the trainer and validator
validator = build_evaluator(
model=model,
metrics=metrics,
metrics_fp=metrics_fp,
device=device,
pad_idx=vocab.pad_idx,
)
trainer = build_trainer(
model=model,
loss_fn=loss_fn,
optimizer=torch.optim.Adam(model.parameters(), lr=lr),
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
run_dir=run_dir,
validator=validator,
device=device,
)
trainer.run(train_dataloader, max_epochs=max_epochs)
def eval_model(
model, vocab, test_dataset, metrics_fp, loss_fn, batch_size, device, ids_str
):
collate_fn = partial(test_dataset.collate, pad_idx=vocab.pad_idx)
test_dataloader = build_test_dataloader(
test_dataset, batch_size=batch_size, collate_fn=collate_fn
)
metrics = build_metrics(loss_fn, vocab.unk_idx_set, vocab.pad_idx, ids_str)
# run the evaluator
evaluator = build_evaluator(
model=model,
metrics=metrics,
metrics_fp=metrics_fp,
device=device,
pad_idx=vocab.pad_idx,
)
evaluator.run(test_dataloader)