-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathpreprocess_nli.py
168 lines (137 loc) · 6.02 KB
/
preprocess_nli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
import collections
import argparse
import shutil
import subprocess
import sys
import tempfile
from multiprocessing import Pool
import sentencepiece as spm
def preprocess(spm_model_path, train_path, valid_path, test_path, dest_dir, remove_empty=False, output_format='piece', workers=20):
with tempfile.TemporaryDirectory() as tmp:
# Tokenize with SentencePiece
for split, path in ('train', train_path), ('valid', valid_path), ('test', test_path):
if path is None:
continue
if path == '-':
path = sys.stdin.fileno()
with open(path, encoding='utf-8', errors='surrogateescape') as fin:
with open(f'{tmp}/{split}', mode='w', encoding='utf-8', errors='surrogateescape') as fout:
encoder = MultiprocessingEncoder(model=spm_model_path, remove_empty=remove_empty, output_format=output_format)
pool = Pool(workers, initializer=encoder.initializer)
encoded_lines = pool.imap(encoder.encode, fin, 10000)
for i, line in enumerate(encoded_lines, start=1):
if line is not None:
print(line, file=fout)
if i % 10000 == 0:
print("tokenized {} lines".format(i), file=sys.stderr)
# Generate dictionary
sp = spm.SentencePieceProcessor(model_file=spm_model_path)
if output_format == 'piece':
vocab = [sp.id_to_piece(i) for i in range(3, sp.vocab_size())]
else:
vocab = map(str, range(sp.vocab_size()))
with open(f'{tmp}/dict.txt', mode='w', encoding='utf-8', errors='surrogateescape') as f:
for word in vocab:
print(word, 1, file=f)
# Binarize
command = [
'python3', '-m', 'fairseq_cli.preprocess',
'--only-source',
'--thresholdsrc', '0',
'--destdir', dest_dir,
'--srcdict', f'{tmp}/dict.txt',
'--workers', '20',
]
for split, path in ('train', train_path), ('valid', valid_path), ('test', test_path):
if path is not None:
command += [f'--{split}pref', f'{tmp}/{split}']
subprocess.run(command)
# Copy SentencePiece model
shutil.copyfile(spm_model_path, f'{dest_dir}/sentencepiece.bpe.model')
class MultiprocessingEncoder(object):
def __init__(self, model, remove_empty, output_format):
self.model = model
self.remove_empty = remove_empty
self.output_format = output_format
def initializer(self):
global sp
sp = spm.SentencePieceProcessor(model_file=self.model)
def encode(self, line):
global sp
line = line.strip()
if len(line) == 0 and self.remove_empty:
return None
if self.output_format == 'piece':
return ' '.join(sp.encode_as_pieces(line))
else:
return ' '.join(map(str, sp.encode(line)))
def write_lines(lines, path):
with open(path, mode='x', encoding='utf-8') as f:
for line in lines:
print(line, file=f)
def read_jsonl(path):
with open(path, encoding='utf-8') as f:
return [json.loads(line) for line in f.read().splitlines()]
def read_nli(path, langs=None):
data = read_jsonl(path)
if langs is not None:
data = [sample for sample in data if sample.get('language') in langs]
lang2count = collections.defaultdict(int)
for sample in data:
lang2count[sample.get('language')] += 1
if langs:
assert set(lang2count.keys()) == set(langs)
nlangs = len(lang2count)
assert nlangs > 0
lens = list(lang2count.values())
assert all([lens[0] == length for length in lens])
print(f'Loaded {lens[0]} samples in {nlangs} languages from {path}', file=sys.stderr)
return data
def main():
parser = argparse.ArgumentParser(description='Tokenize and binarize NLI data')
parser.add_argument('--sentencepiece-model', required=True)
parser.add_argument('--train', required=True, help='Training data in jsonl format')
parser.add_argument('--valid', required=True, help='Validation data in jsonl format')
parser.add_argument('--destdir', required=True)
args = parser.parse_args()
os.makedirs(args.destdir + '/raw',)
os.makedirs(args.destdir + '/bin', )
# Extract input/labels
for split, path in ('train', args.train), ('valid', args.valid):
data = read_nli(path, langs=None)
original_size = len(data)
data = [sample for sample in data if sample['gold_label'] != '-']
assert all(sample['gold_label'] in ('contradiction', 'entailment', 'neutral') for sample in data)
filtered_size = len(data)
if filtered_size != original_size:
print(f'Filtered {filtered_size}/{original_size} samples from {path}', file=sys.stderr)
for name, field in ('input0', 'sentence1'), ('input1', 'sentence2'), ('label', 'gold_label'):
write_lines([sample[field] for sample in data], f'{args.destdir}/raw/{split}.{name}.txt')
# Tokenize and binarize input
for field in 'input0', 'input1':
preprocess(
spm_model_path=args.sentencepiece_model,
train_path=f'{args.destdir}/raw/train.{field}.txt',
valid_path=f'{args.destdir}/raw/valid.{field}.txt',
test_path=None,
dest_dir=f'{args.destdir}/bin/{field}',
workers=20,
)
# Binarize labels
subprocess.run([
'python3', '-m', 'fairseq_cli.preprocess',
'--trainpref', f'{args.destdir}/raw/train.label.txt',
'--validpref', f'{args.destdir}/raw/valid.label.txt',
'--only-source',
'--thresholdsrc', '0',
'--destdir', f'{args.destdir}/bin/label',
'--workers', '20',
])
if __name__ == '__main__':
main()