This repository was archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_siam_rcnn.py
executable file
·312 lines (273 loc) · 9.81 KB
/
train_siam_rcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python
import glob
import logging
import os
from collections import OrderedDict
import detectron2.utils.comm as comm
import torch
from detectron2 import model_zoo
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.data import (
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.engine import (
default_argument_parser,
default_setup,
default_writers,
launch,
)
from detectron2.evaluation import (
COCOEvaluator,
DatasetEvaluators,
inference_on_dataset,
print_csv_format,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils.events import EventStorage
from detectron2_extensions.config import get_cfg
from torch.nn.parallel import DistributedDataParallel
from vq2d.baselines import VisualQueryDatasetMapper, register_visual_query_datasets
logger = logging.getLogger("detectron2")
def get_evaluator(cfg, dataset_name, output_folder=None):
"""
Create evaluators.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
if len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
def do_test(cfg, model):
results = OrderedDict()
for dataset_name in cfg.DATASETS.TEST:
data_loader = build_detection_test_loader(
cfg, dataset_name, mapper=VisualQueryDatasetMapper(cfg, is_train=False)
)
evaluator = get_evaluator(
cfg, dataset_name, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
)
results_i = inference_on_dataset(model, data_loader, evaluator)
results[dataset_name] = results_i
if comm.is_main_process():
logger.info("Evaluation results for {} in csv format:".format(dataset_name))
print_csv_format(results_i)
return results
def set_model_to_train(model):
"""
Freezes backbone, proposal_generator. Sets roi_heads to train.
"""
'''
# Freeze backbone
model.backbone.eval()
for p in model.backbone.parameters():
p.requires_grad = False
# Freeze proposal_generator
model.proposal_generator.eval()
for p in model.proposal_generator.parameters():
p.requires_grad = False
'''
model.backbone.train()
model.proposal_generator.train()
# Set roi_heads to train
model.roi_heads.train()
def do_train(cfg, model, resume=False):
distributed = comm.get_world_size() > 1
if distributed:
set_model_to_train(model.module)
else:
set_model_to_train(model)
# optimizer = build_optimizer(cfg, model)
params_backbone = {
'params': model.module.backbone.parameters(),
"lr": cfg.SOLVER.BASE_LR*0.1
}
params_proposal_generator = {
'params': model.module.proposal_generator.parameters(),
"lr": cfg.SOLVER.BASE_LR*0.1
}
params_roi_heads = {
'params': model.module.roi_heads.parameters(),
"lr": cfg.SOLVER.BASE_LR
}
params_list = [params_backbone, params_roi_heads, params_proposal_generator]
optimizer = torch.optim.SGD(
params_list,
lr=cfg.SOLVER.BASE_LR,
momentum=cfg.SOLVER.MOMENTUM,
nesterov=cfg.SOLVER.NESTEROV,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
)
scheduler = build_lr_scheduler(cfg, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
start_iter = (
checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get(
"iteration", -1
)
+ 1
)
max_iter = cfg.SOLVER.MAX_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = (
default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else []
)
# This script does not support accurate timing and precise BN here.
# They are not trivial to implement in a small training loop.
data_loader = build_detection_train_loader(
cfg,
mapper=VisualQueryDatasetMapper(cfg, is_train=True),
)
logger.info("Starting training from iteration {}".format(start_iter))
with EventStorage(start_iter) as storage:
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
storage.iter = iteration
loss_dict = model(data)
losses = sum(loss_dict.values())
assert torch.isfinite(losses).all(), loss_dict
loss_dict_reduced = {
k: v.item() for k, v in comm.reduce_dict(loss_dict).items()
}
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
if comm.is_main_process():
storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced)
optimizer.zero_grad()
losses.backward()
optimizer.step()
storage.put_scalar(
"lr", optimizer.param_groups[0]["lr"], smoothing_hint=False
)
scheduler.step()
if (
cfg.TEST.EVAL_PERIOD > 0
and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0
and iteration != max_iter - 1
):
results = do_test(cfg, model)
comm.synchronize()
# Required again since do_test sets full model to train() at the end
if distributed:
set_model_to_train(model.module)
else:
set_model_to_train(model)
# Log results to storage
if comm.is_main_process():
results_formed = {}
for dset, results_i in results.items():
for rtype, results_ij in results_i.items():
for metric, result_metric in results_ij.items():
results_formed[
f"{dset}/{rtype}/{metric}"
] = result_metric
storage.put_scalars(**results_formed)
if iteration - start_iter > 5 and (
(iteration + 1) % 20 == 0 or iteration == max_iter - 1
):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def build_siam_model(cfg):
model = build_model(cfg)
# Initialize backbone, proposal_generators
pretrained_model = model_zoo.get(cfg.MODEL.SIAMESE_PRETRAINED_CONFIG, trained=True)
model.backbone.load_state_dict(pretrained_model.backbone.state_dict())
model.proposal_generator.load_state_dict(
pretrained_model.proposal_generator.state_dict()
)
return model
def register_all_datasets(cfg):
# Register VQ datasets
# The dataset names are "<NAME>_<SPLIT>" for SPLIT in "train", "val", "test"
splits_root = cfg.INPUT.VQ_DATA_SPLITS_ROOT
images_root = cfg.INPUT.VQ_IMAGES_ROOT
register_visual_query_datasets(splits_root, images_root, "visual_query")
register_visual_query_datasets(
splits_root,
images_root,
"visual_query_clean",
bbox_aspect_scale=0.5,
bbox_area_scale=0.25,
)
register_visual_query_datasets(
splits_root,
images_root,
"visual_query_clean_plus",
bbox_aspect_scale=0.75,
bbox_area_scale=0.50,
)
register_visual_query_datasets(
splits_root,
images_root,
"visual_query_clean_aug",
bbox_aspect_scale=0.5,
bbox_area_scale=0.25,
perform_response_augmentation=True,
)
register_visual_query_datasets(
splits_root,
images_root,
"visual_query_clean_aug_neg",
bbox_aspect_scale=0.5,
bbox_area_scale=0.25,
perform_response_augmentation=True,
include_empty_image=True
)
def main(args):
cfg = setup(args)
register_all_datasets(cfg)
model = build_siam_model(cfg)
if not args.eval_only:
# Slurm resumption logic
## If a checkpoint exists, load the most recent one
model_paths = glob.glob(os.path.join(cfg.OUTPUT_DIR, "model_*.pth"))
if len(model_paths) > 0:
get_ckpt_id = lambda x: int(os.path.basename(x).split(".")[0].split("_")[1])
model_paths = sorted(model_paths, key=get_ckpt_id, reverse=True)
cfg.defrost()
cfg.MODEL.WEIGHTS = model_paths[0]
cfg.freeze()
args.resume = True
print(f"======> Resuming training from {model_paths[0]}")
logger.info("Model:\n{}".format(model))
if args.eval_only:
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return do_test(cfg, model)
set_model_to_train(model)
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model,
device_ids=[comm.get_local_rank()],
broadcast_buffers=False, # , find_unused_parameters=True
)
do_train(cfg, model, resume=args.resume)
return do_test(cfg, model)
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)