-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathagent.py
163 lines (128 loc) · 5.9 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import random, numpy as np
from pathlib import Path
from neural import DDQNet
from collections import deque
class Mario:
def __init__(self, state_dim, action_dim, save_dir, checkpoint=None):
self.state_dim = state_dim
self.action_dim = action_dim
self.save_dir = save_dir
self.use_cuda = torch.cuda.is_available()
self.exploration_rate = 1
self.exploration_rate_decay = 0.99999975
self.exploration_rate_min = 0.1
self.curr_step = 0
self.save_every = 5e5
self.memory = deque(maxlen=7000)
self.batch_size = 32
self.gamma = 0.9
self.burnin = 1e4 # min no of exp before training
self.learn_every = 3 # no of exp between updates to Q_online
self.sync_every = 1e4 # no of exp between Q_target and Q_online sync
self.net = DDQNet(self.state_dim, self.action_dim).float()
if self.use_cuda:
self.net = self.net.to(device="cuda")
if checkpoint:
self.load(checkpoint)
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=0.00025)
self.loss_fn = torch.nn.SmoothL1Loss()
def act(self, state):
"""
When the agent is in a state, it chooses an action based on epsilon greedy
Inputs: state = A single obs of the current state, dim is state_dim
Outputs: action_idx(int) = An integer representing which action Mario will perform
"""
#Explore
if np.random.rand() < self.exploration_rate:
action_idx = np.random.randint(self.action_dim)
#Exploit
else:
state = state.__array__()
if self.use_cuda:
state = torch.tensor(state, dtype=torch.float32).cuda()
else:
state = torch.tensor(state, dtype=torch.float32)
state = state.unsqueeze(0)
action_values = self.net(state, model="online")
action_idx = torch.argmax(action_values, axis=1).item()
# decrease the exploration rate
self.exploration_rate *= self.exploration_rate_decay
self.explortaion_rate = max(self.exploration_rate_min, self.exploration_rate)
self.curr_step += 1
return action_idx
def cache(self, state, next_state, action, reward, done):
"""Add the exp to the memory"""
state = state.__array__()
next_state = next_state.__array__()
if self.use_cuda:
state = torch.tensor(state, dtype=torch.float32).cuda()
next_state = torch.tensor(next_state, dtype=torch.float32).cuda()
action = torch.tensor([action], dtype=torch.float32).cuda()
reward = torch.tensor([reward], dtype=torch.float32).cuda()
done = torch.tensor([done], dtype=torch.float32).cuda()
else:
state = torch.tensor(state, dtype=torch.float32)
next_state = torch.tensor(next_state, dtype=torch.float32)
action = torch.tensor([action], dtype=torch.float32)
reward = torch.tensor([reward], dtype=torch.float32)
done = torch.tensor([done], dtype=torch.float32)
self.memory.append((state, next_state, action, reward, done,))
def recall(self):
"""Sample exp from memory"""
batch = random.sample(self.memory, self.batch_size)
state, next_state, action, reward, done = map(torch.stack, zip(*batch))
return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()
def td_estimate(self, state, action):
current_Q = self.net(state, model="online")[
np.arange(0, self.batch_size), action.long()
]
return current_Q
@torch.no_grad()
def td_target(self, reward, next_state, done):
next_state_Q = self.net(next_state, model="online")
best_action = torch.argmax(next_state_Q, axis=1)
next_Q = self.net(next_state, model="target")[
np.arange(0, self.batch_size), best_action.long()
]
return (reward + (1 - done.float()) * self.gamma * next_Q).float()
def update_Q_online(self, td_estimate, td_target):
loss = self.loss_fn(td_estimate, td_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss.item()
def sync_Q_target(self):
self.net.target.load_state_dict(self.net.online.state_dict())
def learn(self):
"""Update online action value (Q) func with a batch of agent exp"""
if self.curr_step % self.sync_every == 0:
self.sync_Q_target()
if self.curr_step % self.save_every == 0:
self.save()
if self.curr_step < self.burnin:
return None, None
if self.curr_step % self.learn_every != 0:
return None, None
# Take a sample from the memory
state, next_state, action, reward, done = self.recall()
# Get TD Estimate
td_est = self.td_estimate(state, action)
# Get TD Target
td_tgt = self.td_target(reward, next_state, done)
# BackP loss through Q_online
loss = self.update_Q_online(td_est, td_tgt)
return (td_est.mean().item(), loss)
def save(self):
save_path = (self.save_dir / f"mario_net_{int(self.curr_step // self.save_every)}.chkpt")
torch.save(dict(model=self.net.state_dict(), exploration_rate=self.exploration_rate), save_path,)
print(f"MarioNet saved to {save_path} at step {self.curr_step}")
def load(self, load_path):
if not load_path.exists():
raise ValueError(f"{load_path} does not exist")
ckp = torch.load(load_path, map_location=('cuda' if self.use_cuda else 'cpu'))
exploration_rate = ckp.get('exploration_rate')
state_dict = ckp.get('model')
print(f"Loading model at {load_path} with exploration rate {exploration_rate}")
self.net.load_state_dict(state_dict)
self.exploration_rate = exploration_rate