-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
52 lines (38 loc) · 1.57 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModel
import torch
import argparse
# Create an argument parser
parser = argparse.ArgumentParser(description='Text Vectorization Server')
# Add an argument for the model name with a default value
parser.add_argument('--model-name', type=str, default='sentence-transformers/all-MiniLM-L6-v2',
help='Name of the Hugging Face model to use')
# Parse the command-line arguments
args = parser.parse_args()
# Use args.model_name to access the model name
model_name = args.model_name
app = Flask(__name__)
# Load the pre-trained model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({'status': 'OK'}), 200
@app.route('/vectorize', methods=['POST'])
def vectorize_text():
try:
data = request.get_json()
query = data.get('query')
if not query:
return jsonify({'error': 'Query is required'}), 400
# Tokenize the text and obtain embeddings
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
# Extract embeddings from the output
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
return jsonify({'vector': embeddings}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=9876)