Skip to content

Latest commit

 

History

History
155 lines (100 loc) · 3.13 KB

README.md

File metadata and controls

155 lines (100 loc) · 3.13 KB

pgvector-vector-search-psql

vector search in pgvector using psql

Create an Azure Database for PostgreSQL server (flexible)

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/quickstart-create-server-portal

Install psql (Local)

brew services start postgresql@15

Connect to the PostgreSQL database using psql

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/quickstart-create-server-portal#connect-to-the-postgresql-database-using-psql

Execute following PSQL commands to review vector search

Enable Vector Extension and insert Vectors

postgres=> CREATE DATABASE vectorpgsqldb;

postgres=> \c vectorpgsqldb

psql (15.4 (Homebrew), server 15.3) SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off) You are now connected to database "vectorpgsqldb" as user "citus".

vectorpgsqldb=> CREATE EXTENSION vector;

CREATE EXTENSION

vectorpgsqldb=> CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

CREATE TABLE

vectorpgsqldb=> INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

INSERT 0 2

vectorpgsqldb=> SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

id | embedding ----+----------- 1 | [1,2,3] 2 | [4,5,6] (2 rows)

vectorpgsqldb=> INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

INSERT 0 2

vectorpgsqldb=> INSERT INTO items (id, embedding) VALUES (1, '[1,2,3]'), (2, '[4,5,6]') ON CONFLICT (id) DO UPDATE SET embedding = EXCLUDED.embedding;

INSERT 0 2

Querying Vector Data

Get the nearest neighbors to a vector

vectorpgsqldb=> SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

id | embedding ----+----------- 3 | [1,2,3] 1 | [1,2,3] 4 | [4,5,6] 2 | [4,5,6] (4 rows)

Get the nearest neighbors to a row

vectorpgsqldb=> SELECT * FROM items WHERE id != 1 ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;

id | embedding ----+----------- 3 | [1,2,3] 4 | [4,5,6] 2 | [4,5,6] (3 rows)

Get rows within a certain distance

vectorpgsqldb=> SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

id | embedding ----+----------- 3 | [1,2,3] 1 | [1,2,3] (2 rows)

Get the distance

vectorpgsqldb=> SELECT embedding <-> '[3,1,2]' AS distance FROM items;

 distance      

2.449489742783178 5.744562646538029 2.449489742783178 5.744562646538029 (4 rows)

inner product

vectorpgsqldb=> SELECT (embedding <#> '[3,1,2]') * -1 AS inner_product FROM items;

inner_product

        11
        29
        11
        29

(4 rows)

cosine similarity

vectorpgsqldb=> SELECT 1 - (embedding <=> '[3,1,2]') AS cosine_similarity FROM items;

cosine_similarity

0.7857142857142857 0.8832601106161003 0.7857142857142857 0.8832601106161003 (4 rows)

Average vectors

vectorpgsqldb=> SELECT AVG(embedding) FROM items;

  avg      

[2.5,3.5,4.5] (1 row)

Average groups of vectors ^ vectorpgsqldb=> SELECT id, AVG(embedding) FROM items GROUP BY id;

id | avg
----+--------- 2 | [4,5,6] 3 | [1,2,3] 4 | [4,5,6] 1 | [1,2,3] (4 rows)