-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathVGG13.py
55 lines (47 loc) · 1.61 KB
/
VGG13.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import torch.nn as nn
import psutil
# from memory_profiler import profile
import os
default_layer = [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
class vgg13(nn.Module):
def __init__(self, layer_nums = None):
super(vgg13, self).__init__()
if layer_nums is None:
self.layer_nums = default_layer
else:
self.layer_nums = layer_nums
self.inchannels = 3
self.features = self._make_layer(self.layer_nums)
self.linear = nn.Sequential(
nn.Linear(6*6*self.layer_nums[-2], 512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 6)
)
def _make_layer(self, layer_nums):
layers = []
for v in layer_nums:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
CONV2d = nn.Conv2d(self.inchannels, v, kernel_size=3, padding=1, bias=False)
layers += [CONV2d, nn.ReLU(inplace=True), nn.BatchNorm2d(v)]
self.inchannels = v
return nn.Sequential(*layers)
def forward(self, x):
count = 0
for module in self.features:
x = module(x)
x = x.view(x.size(0), -1)
for module in self.linear:
x = module(x)
return x
if __name__ == "__main__":
pruning_layer = [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
net = vgg13(pruning_layer)
print(net)
x = torch.rand([1, 3, 200, 200])
y = net(x)
print(y.shape)