forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gbdt-binary.py
72 lines (61 loc) · 2.33 KB
/
gbdt-binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
import pandas as pd
from sklearn.metrics import roc_auc_score, precision_score, accuracy_score, recall_score
from sklearn.ensemble import GradientBoostingClassifier
from pipeline.utils.tools import JobConfig
def main(config="../../config.yaml", param="./gbdt_config_binary.yaml"):
# obtain config
if isinstance(param, str):
param = JobConfig.load_from_file(param)
data_guest = param["data_guest"]
data_host = param["data_host"]
idx = param["idx"]
label_name = param["label_name"]
print('config is {}'.format(config))
if isinstance(config, str):
config = JobConfig.load_from_file(config)
data_base_dir = config["data_base_dir"]
print('data base dir is', data_base_dir)
else:
data_base_dir = config.data_base_dir
# prepare data
df_guest = pd.read_csv(os.path.join(data_base_dir, data_guest), index_col=idx)
df_host = pd.read_csv(os.path.join(data_base_dir, data_host), index_col=idx)
df = df_guest.join(df_host, rsuffix='host')
y = df[label_name]
X = df.drop(label_name, axis=1)
clf = GradientBoostingClassifier(random_state=0, n_estimators=120 if 'epsilon' in data_guest else 50)
clf.fit(X, y)
y_prob = clf.predict(X)
try:
auc_score = roc_auc_score(y, y_prob)
except BaseException:
print(f"no auc score available")
return
result = {"auc": auc_score}
print(result)
return {}, result
if __name__ == "__main__":
parser = argparse.ArgumentParser("BENCHMARK-QUALITY SKLEARN JOB")
parser.add_argument("-param", type=str,
help="config file for params")
args = parser.parse_args()
if args.config is not None:
main(args.param)
main()