forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit_model_param.py
70 lines (56 loc) · 2.68 KB
/
init_model_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from federatedml.param.base_param import BaseParam
class InitParam(BaseParam):
"""
Initialize Parameters used in initializing a model.
Parameters
----------
init_method : {'random_uniform', 'random_normal', 'ones', 'zeros' or 'const'}
Initial method.
init_const : int or float, default: 1
Required when init_method is 'const'. Specify the constant.
fit_intercept : bool, default: True
Whether to initialize the intercept or not.
"""
def __init__(self, init_method='random_uniform', init_const=1, fit_intercept=True, random_seed=None):
super().__init__()
self.init_method = init_method
self.init_const = init_const
self.fit_intercept = fit_intercept
self.random_seed = random_seed
def check(self):
if type(self.init_method).__name__ != "str":
raise ValueError(
"Init param's init_method {} not supported, should be str type".format(self.init_method))
else:
self.init_method = self.init_method.lower()
if self.init_method not in ['random_uniform', 'random_normal', 'ones', 'zeros', 'const']:
raise ValueError(
"Init param's init_method {} not supported, init_method should in 'random_uniform',"
" 'random_normal' 'ones', 'zeros' or 'const'".format(self.init_method))
if type(self.init_const).__name__ not in ['int', 'float']:
raise ValueError(
"Init param's init_const {} not supported, should be int or float type".format(self.init_const))
if type(self.fit_intercept).__name__ != 'bool':
raise ValueError(
"Init param's fit_intercept {} not supported, should be bool type".format(self.fit_intercept))
if self.random_seed is not None:
if type(self.random_seed).__name__ != 'int':
raise ValueError(
"Init param's random_seed {} not supported, should be int or float type".format(self.random_seed))
return True