forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_baseline_param.py
66 lines (53 loc) · 2.17 KB
/
local_baseline_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from federatedml.param.base_param import BaseParam
from federatedml.param.predict_param import PredictParam
class LocalBaselineParam(BaseParam):
"""
Define the local baseline model param
Parameters
----------
model_name : str
sklearn model used to train on baseline model
model_opts : dict or none, default None
Param to be used as input into baseline model
predict_param : PredictParam object, default: default PredictParam object
predict param
need_run: bool, default True
Indicate if this module needed to be run
"""
def __init__(self, model_name="LogisticRegression", model_opts=None, predict_param=PredictParam(), need_run=True):
super(LocalBaselineParam, self).__init__()
self.model_name = model_name
self.model_opts = model_opts
self.predict_param = copy.deepcopy(predict_param)
self.need_run = need_run
def check(self):
descr = "local baseline param"
self.model_name = self.check_and_change_lower(self.model_name,
["logisticregression"],
descr)
self.check_boolean(self.need_run, descr)
if self.model_opts is not None:
if not isinstance(self.model_opts, dict):
raise ValueError(descr + " model_opts must be None or dict.")
if self.model_opts is None:
self.model_opts = {}
self.predict_param.check()
return True