forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
logistic_regression_param.py
295 lines (249 loc) · 14 KB
/
logistic_regression_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from federatedml.param.glm_param import LinearModelParam
from federatedml.param.callback_param import CallbackParam
from federatedml.param.cross_validation_param import CrossValidationParam
from federatedml.param.encrypt_param import EncryptParam
from federatedml.param.encrypted_mode_calculation_param import EncryptedModeCalculatorParam
from federatedml.param.init_model_param import InitParam
from federatedml.param.predict_param import PredictParam
from federatedml.param.sqn_param import StochasticQuasiNewtonParam
from federatedml.param.stepwise_param import StepwiseParam
from federatedml.util import consts
class LogisticParam(LinearModelParam):
"""
Parameters used for Logistic Regression both for Homo mode or Hetero mode.
Parameters
----------
penalty : {'L2', 'L1' or None}
Penalty method used in LR. Please note that, when using encrypted version in HomoLR,
'L1' is not supported.
tol : float, default: 1e-4
The tolerance of convergence
alpha : float, default: 1.0
Regularization strength coefficient.
optimizer : {'rmsprop', 'sgd', 'adam', 'nesterov_momentum_sgd', 'adagrad'}, default: 'rmsprop'
Optimize method.
batch_strategy : str, {'full', 'random'}, default: "full"
Strategy to generate batch data.
a) full: use full data to generate batch_data, batch_nums every iteration is ceil(data_size / batch_size)
b) random: select data randomly from full data, batch_num will be 1 every iteration.
batch_size : int, default: -1
Batch size when updating model. -1 means use all data in a batch. i.e. Not to use mini-batch strategy.
shuffle : bool, default: True
Work only in hetero logistic regression, batch data will be shuffle in every iteration.
masked_rate: int, float: default: 5
Use masked data to enhance security of hetero logistic regression
learning_rate : float, default: 0.01
Learning rate
max_iter : int, default: 100
The maximum iteration for training.
early_stop : {'diff', 'weight_diff', 'abs'}, default: 'diff'
Method used to judge converge or not.
a) diff: Use difference of loss between two iterations to judge whether converge.
b) weight_diff: Use difference between weights of two consecutive iterations
c) abs: Use the absolute value of loss to judge whether converge. i.e. if loss < eps, it is converged.
Please note that for hetero-lr multi-host situation, this parameter support "weight_diff" only.
decay: int or float, default: 1
Decay rate for learning rate. learning rate will follow the following decay schedule.
lr = lr0/(1+decay*t) if decay_sqrt is False. If decay_sqrt is True, lr = lr0 / sqrt(1+decay*t)
where t is the iter number.
decay_sqrt: bool, default: True
lr = lr0/(1+decay*t) if decay_sqrt is False, otherwise, lr = lr0 / sqrt(1+decay*t)
encrypt_param: EncryptParam object, default: default EncryptParam object
encrypt param
predict_param: PredictParam object, default: default PredictParam object
predict param
callback_param: CallbackParam object
callback param
cv_param: CrossValidationParam object, default: default CrossValidationParam object
cv param
multi_class: {'ovr'}, default: 'ovr'
If it is a multi_class task, indicate what strategy to use. Currently, support 'ovr' short for one_vs_rest only.
validation_freqs: int or list or tuple or set, or None, default None
validation frequency during training.
early_stopping_rounds: int, default: None
Will stop training if one metric doesn’t improve in last early_stopping_round rounds
metrics: list or None, default: None
Indicate when executing evaluation during train process, which metrics will be used. If set as empty,
default metrics for specific task type will be used. As for binary classification, default metrics are
['auc', 'ks']
use_first_metric_only: bool, default: False
Indicate whether use the first metric only for early stopping judgement.
floating_point_precision: None or integer
if not None, use floating_point_precision-bit to speed up calculation,
e.g.: convert an x to round(x * 2**floating_point_precision) during Paillier operation, divide
the result by 2**floating_point_precision in the end.
"""
def __init__(self, penalty='L2',
tol=1e-4, alpha=1.0, optimizer='rmsprop',
batch_size=-1, shuffle=True, batch_strategy="full", masked_rate=5,
learning_rate=0.01, init_param=InitParam(),
max_iter=100, early_stop='diff', encrypt_param=EncryptParam(),
predict_param=PredictParam(), cv_param=CrossValidationParam(),
decay=1, decay_sqrt=True,
multi_class='ovr', validation_freqs=None, early_stopping_rounds=None,
stepwise_param=StepwiseParam(), floating_point_precision=23,
metrics=None,
use_first_metric_only=False,
callback_param=CallbackParam()
):
super(LogisticParam, self).__init__()
self.penalty = penalty
self.tol = tol
self.alpha = alpha
self.optimizer = optimizer
self.batch_size = batch_size
self.learning_rate = learning_rate
self.init_param = copy.deepcopy(init_param)
self.max_iter = max_iter
self.early_stop = early_stop
self.encrypt_param = encrypt_param
self.shuffle = shuffle
self.batch_strategy = batch_strategy
self.masked_rate = masked_rate
self.predict_param = copy.deepcopy(predict_param)
self.cv_param = copy.deepcopy(cv_param)
self.decay = decay
self.decay_sqrt = decay_sqrt
self.multi_class = multi_class
self.validation_freqs = validation_freqs
self.stepwise_param = copy.deepcopy(stepwise_param)
self.early_stopping_rounds = early_stopping_rounds
self.metrics = metrics or []
self.use_first_metric_only = use_first_metric_only
self.floating_point_precision = floating_point_precision
self.callback_param = copy.deepcopy(callback_param)
def check(self):
descr = "logistic_param's"
super(LogisticParam, self).check()
self.predict_param.check()
if self.encrypt_param.method not in [consts.PAILLIER, None]:
raise ValueError(
"logistic_param's encrypted method support 'Paillier' or None only")
self.multi_class = self.check_and_change_lower(self.multi_class, ["ovr"], f"{descr}")
if not isinstance(self.masked_rate, (float, int)) or self.masked_rate < 0:
raise ValueError("masked rate should be non-negative numeric number")
if not isinstance(self.batch_strategy, str) or self.batch_strategy.lower() not in ["full", "random"]:
raise ValueError("batch strategy should be full or random")
self.batch_strategy = self.batch_strategy.lower()
if not isinstance(self.shuffle, bool):
raise ValueError("shuffle should be boolean type")
return True
class HomoLogisticParam(LogisticParam):
"""
Parameters
----------
re_encrypt_batches : int, default: 2
Required when using encrypted version HomoLR. Since multiple batch updating coefficient may cause
overflow error. The model need to be re-encrypt for every several batches. Please be careful when setting
this parameter. Too large batches may cause training failure.
aggregate_iters : int, default: 1
Indicate how many iterations are aggregated once.
use_proximal: bool, default: False
Whether to turn on additional proximial term. For more details of FedProx, Please refer to
https://arxiv.org/abs/1812.06127
mu: float, default 0.1
To scale the proximal term
"""
def __init__(self, penalty='L2',
tol=1e-4, alpha=1.0, optimizer='rmsprop',
batch_size=-1, learning_rate=0.01, init_param=InitParam(),
max_iter=100, early_stop='diff',
encrypt_param=EncryptParam(method=None), re_encrypt_batches=2,
predict_param=PredictParam(), cv_param=CrossValidationParam(),
decay=1, decay_sqrt=True,
aggregate_iters=1, multi_class='ovr', validation_freqs=None,
early_stopping_rounds=None,
metrics=['auc', 'ks'],
use_first_metric_only=False,
use_proximal=False,
mu=0.1, callback_param=CallbackParam()
):
super(HomoLogisticParam, self).__init__(penalty=penalty, tol=tol, alpha=alpha, optimizer=optimizer,
batch_size=batch_size,
learning_rate=learning_rate,
init_param=init_param, max_iter=max_iter, early_stop=early_stop,
encrypt_param=encrypt_param, predict_param=predict_param,
cv_param=cv_param, multi_class=multi_class,
validation_freqs=validation_freqs,
decay=decay, decay_sqrt=decay_sqrt,
early_stopping_rounds=early_stopping_rounds,
metrics=metrics, use_first_metric_only=use_first_metric_only,
callback_param=callback_param)
self.re_encrypt_batches = re_encrypt_batches
self.aggregate_iters = aggregate_iters
self.use_proximal = use_proximal
self.mu = mu
def check(self):
super().check()
if type(self.re_encrypt_batches).__name__ != "int":
raise ValueError(
"logistic_param's re_encrypt_batches {} not supported, should be int type".format(
self.re_encrypt_batches))
elif self.re_encrypt_batches < 0:
raise ValueError(
"logistic_param's re_encrypt_batches must be greater or equal to 0")
if not isinstance(self.aggregate_iters, int):
raise ValueError(
"logistic_param's aggregate_iters {} not supported, should be int type".format(
self.aggregate_iters))
if self.encrypt_param.method == consts.PAILLIER:
if self.optimizer != 'sgd':
raise ValueError("Paillier encryption mode supports 'sgd' optimizer method only.")
if self.penalty == consts.L1_PENALTY:
raise ValueError("Paillier encryption mode supports 'L2' penalty or None only.")
return True
class HeteroLogisticParam(LogisticParam):
def __init__(self, penalty='L2',
tol=1e-4, alpha=1.0, optimizer='rmsprop',
batch_size=-1, shuffle=True, batch_strategy="full", masked_rate=5,
learning_rate=0.01, init_param=InitParam(),
max_iter=100, early_stop='diff',
encrypted_mode_calculator_param=EncryptedModeCalculatorParam(),
predict_param=PredictParam(), cv_param=CrossValidationParam(),
decay=1, decay_sqrt=True, sqn_param=StochasticQuasiNewtonParam(),
multi_class='ovr', validation_freqs=None, early_stopping_rounds=None,
metrics=['auc', 'ks'], floating_point_precision=23,
encrypt_param=EncryptParam(),
use_first_metric_only=False, stepwise_param=StepwiseParam(),
callback_param=CallbackParam()
):
super(HeteroLogisticParam, self).__init__(penalty=penalty, tol=tol, alpha=alpha, optimizer=optimizer,
batch_size=batch_size, shuffle=shuffle, batch_strategy=batch_strategy,
masked_rate=masked_rate,
learning_rate=learning_rate,
init_param=init_param, max_iter=max_iter, early_stop=early_stop,
predict_param=predict_param, cv_param=cv_param,
decay=decay,
decay_sqrt=decay_sqrt, multi_class=multi_class,
validation_freqs=validation_freqs,
early_stopping_rounds=early_stopping_rounds,
metrics=metrics, floating_point_precision=floating_point_precision,
encrypt_param=encrypt_param,
use_first_metric_only=use_first_metric_only,
stepwise_param=stepwise_param,
callback_param=callback_param)
self.encrypted_mode_calculator_param = copy.deepcopy(encrypted_mode_calculator_param)
self.sqn_param = copy.deepcopy(sqn_param)
def check(self):
super().check()
self.encrypted_mode_calculator_param.check()
self.sqn_param.check()
return True