forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample_weight_param.py
77 lines (59 loc) · 2.94 KB
/
sample_weight_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from federatedml.param.base_param import BaseParam
from federatedml.util import consts, LOGGER
class SampleWeightParam(BaseParam):
"""
Define sample weight parameters
Parameters
----------
class_weight : str or dict, or None, default None
class weight dictionary or class weight computation mode, string value only accepts 'balanced';
If dict provided, key should be class(label), and weight will not be normalize, e.g.: {'0': 1, '1': 2}
If both class_weight and sample_weight_name are None, return original input data.
sample_weight_name : str
name of column which specifies sample weight.
feature name of sample weight; if both class_weight and sample_weight_name are None, return original input data
normalize : bool, default False
whether to normalize sample weight extracted from `sample_weight_name` column
need_run : bool, default True
whether to run this module or not
"""
def __init__(self, class_weight=None, sample_weight_name=None, normalize=False, need_run=True):
self.class_weight = class_weight
self.sample_weight_name = sample_weight_name
self.normalize = normalize
self.need_run = need_run
def check(self):
descr = "sample weight param's"
if self.class_weight:
if not isinstance(self.class_weight, str) and not isinstance(self.class_weight, dict):
raise ValueError(f"{descr} class_weight must be str, dict, or None.")
if isinstance(self.class_weight, str):
self.class_weight = self.check_and_change_lower(self.class_weight,
[consts.BALANCED],
f"{descr} class_weight")
if isinstance(self.class_weight, dict):
for k, v in self.class_weight.items():
if v < 0:
LOGGER.warning(f"Negative value {v} provided for class {k} as class_weight.")
if self.sample_weight_name:
self.check_string(self.sample_weight_name, f"{descr} sample_weight_name")
self.check_boolean(self.need_run, f"{descr} need_run")
self.check_boolean(self.normalize, f"{descr} normalize")
return True