forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
414 lines (345 loc) · 15.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection model trainer.
This file provides a generic training method that can be used to train a
DetectionModel.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import six
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import ops as util_ops
from object_detection.utils import variables_helper
from deployment import model_deploy
def create_input_queue(create_tensor_dict_fn):
"""Sets up reader, prefetcher and returns input queue.
Args:
create_tensor_dict_fn: function to create tensor dictionary.
Returns:
all_dict: A dictionary holds tensors for images, boxes, and targets.
"""
tensor_dict = create_tensor_dict_fn()
all_dict = {}
num_images = len(tensor_dict[fields.InputDataFields.image])
all_dict['batch'] = tensor_dict['batch']
del tensor_dict['batch']
for i in range(num_images):
suffix = str(i)
for key, val in tensor_dict.items():
all_dict[key + suffix] = val[i]
all_dict[fields.InputDataFields.image + suffix] = tf.to_float(
tf.expand_dims(all_dict[fields.InputDataFields.image + suffix], 0))
return all_dict
def get_inputs(input_queue, num_classes, merge_multiple_label_boxes=False):
"""Dequeues batch and constructs inputs to object detection model.
Args:
input_queue: BatchQueue object holding enqueued tensor_dicts.
num_classes: Number of classes.
merge_multiple_label_boxes: Whether to merge boxes with multiple labels
or not. Defaults to false. Merged boxes are represented with a single
box and a k-hot encoding of the multiple labels associated with the
boxes.
Returns:
images: a list of 3-D float tensor of images.
image_keys: a list of string keys for the images.
locations: a list of tensors of shape [num_boxes, 4] containing the corners
of the groundtruth boxes.
classes: a list of padded one-hot tensors containing target classes.
masks: a list of 3-D float tensors of shape [num_boxes, image_height,
image_width] containing instance masks for objects if present in the
input_queue. Else returns None.
keypoints: a list of 3-D float tensors of shape [num_boxes, num_keypoints,
2] containing keypoints for objects if present in the
input queue. Else returns None.
"""
read_data_list = input_queue
label_id_offset = 1
def extract_images_and_targets(read_data):
"""Extract images and targets from the input dict."""
suffix = 0
images = []
keys = []
locations = []
classes = []
masks = []
keypoints = []
while fields.InputDataFields.image + str(suffix) in read_data:
image = read_data[fields.InputDataFields.image + str(suffix)]
key = ''
if fields.InputDataFields.source_id in read_data:
key = read_data[fields.InputDataFields.source_id + str(suffix)]
location_gt = (
read_data[fields.InputDataFields.groundtruth_boxes + str(suffix)])
classes_gt = tf.cast(
read_data[fields.InputDataFields.groundtruth_classes + str(suffix)],
tf.int32)
classes_gt -= label_id_offset
masks_gt = read_data.get(
fields.InputDataFields.groundtruth_instance_masks + str(suffix))
keypoints_gt = read_data.get(
fields.InputDataFields.groundtruth_keypoints + str(suffix))
if merge_multiple_label_boxes:
location_gt, classes_gt, _ = util_ops.merge_boxes_with_multiple_labels(
location_gt, classes_gt, num_classes)
else:
classes_gt = util_ops.padded_one_hot_encoding(
indices=classes_gt, depth=num_classes, left_pad=0)
# Batch read input data and groundtruth. Images and locations, classes by
# default should have the same number of items.
images.append(image)
keys.append(key)
locations.append(location_gt)
classes.append(classes_gt)
masks.append(masks_gt)
keypoints.append(keypoints_gt)
suffix += 1
return (images, keys, locations, classes, masks, keypoints)
return extract_images_and_targets(read_data_list)
def _create_losses(input_queue, create_model_fn, train_config):
"""Creates loss function for a DetectionModel.
Args:
input_queue: BatchQueue object holding enqueued tensor_dicts.
create_model_fn: A function to create the DetectionModel.
train_config: a train_pb2.TrainConfig protobuf.
"""
detection_model = create_model_fn()
(images, _, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_masks_list, groundtruth_keypoints_list) = get_inputs(
input_queue, detection_model.num_classes,
train_config.merge_multiple_label_boxes)
preprocessed_images = []
true_image_shapes = []
for image in images:
resized_image, true_image_shape = detection_model.preprocess(image)
preprocessed_images.append(resized_image)
true_image_shapes.append(true_image_shape)
images = tf.concat(preprocessed_images, 0)
true_image_shapes = tf.concat(true_image_shapes, 0)
if any(mask is None for mask in groundtruth_masks_list):
groundtruth_masks_list = None
if any(keypoints is None for keypoints in groundtruth_keypoints_list):
groundtruth_keypoints_list = None
detection_model.provide_groundtruth(
groundtruth_boxes_list, groundtruth_classes_list, groundtruth_masks_list,
groundtruth_keypoints_list)
prediction_dict = detection_model.predict(images, true_image_shapes,
input_queue['batch'])
losses_dict = detection_model.loss(prediction_dict, true_image_shapes)
for loss_tensor in losses_dict.values():
tf.losses.add_loss(loss_tensor)
def get_restore_checkpoint_ops(restore_checkpoints, detection_model,
train_config):
"""Restore checkpoint from saved checkpoints.
Args:
restore_checkpoints: loaded checkpoints.
detection_model: Object detection model built from config file.
train_config: a train_pb2.TrainConfig protobuf.
Returns:
restorers: A list ops to init the model from checkpoints.
"""
restorers = []
vars_restored = []
for restore_checkpoint in restore_checkpoints:
var_map = detection_model.restore_map(
fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type)
available_var_map = (
variables_helper.get_variables_available_in_checkpoint(
var_map, restore_checkpoint))
for var_name, var in six.iteritems(available_var_map):
if var in vars_restored:
tf.logging.info('Variable %s contained in multiple checkpoints',
var.op.name)
del available_var_map[var_name]
else:
vars_restored.append(var)
# Initialize from ExponentialMovingAverages if possible.
available_ema_var_map = {}
ckpt_reader = tf.train.NewCheckpointReader(restore_checkpoint)
ckpt_vars_to_shape_map = ckpt_reader.get_variable_to_shape_map()
for var_name, var in six.iteritems(available_var_map):
var_name_ema = var_name + '/ExponentialMovingAverage'
if var_name_ema in ckpt_vars_to_shape_map:
available_ema_var_map[var_name_ema] = var
else:
available_ema_var_map[var_name] = var
available_var_map = available_ema_var_map
init_saver = tf.train.Saver(available_var_map)
if list(available_var_map.keys()):
restorers.append(init_saver)
else:
tf.logging.info('WARNING: Checkpoint %s has no restorable variables',
restore_checkpoint)
return restorers
def train(create_tensor_dict_fn,
create_model_fn,
train_config,
master,
task,
num_clones,
worker_replicas,
clone_on_cpu,
ps_tasks,
worker_job_name,
is_chief,
train_dir,
graph_hook_fn=None):
"""Training function for detection models.
Args:
create_tensor_dict_fn: a function to create a tensor input dictionary.
create_model_fn: a function that creates a DetectionModel and generates
losses.
train_config: a train_pb2.TrainConfig protobuf.
master: BNS name of the TensorFlow master to use.
task: The task id of this training instance.
num_clones: The number of clones to run per machine.
worker_replicas: The number of work replicas to train with.
clone_on_cpu: True if clones should be forced to run on CPU.
ps_tasks: Number of parameter server tasks.
worker_job_name: Name of the worker job.
is_chief: Whether this replica is the chief replica.
train_dir: Directory to write checkpoints and training summaries to.
graph_hook_fn: Optional function that is called after the training graph is
completely built. This is helpful to perform additional changes to the
training graph such as optimizing batchnorm. The function should modify
the default graph.
"""
detection_model = create_model_fn()
with tf.Graph().as_default():
# Build a configuration specifying multi-GPU and multi-replicas.
deploy_config = model_deploy.DeploymentConfig(
num_clones=num_clones,
clone_on_cpu=clone_on_cpu,
replica_id=task,
num_replicas=worker_replicas,
num_ps_tasks=ps_tasks,
worker_job_name=worker_job_name)
# Place the global step on the device storing the variables.
with tf.device(deploy_config.variables_device()):
global_step = slim.create_global_step()
with tf.device(deploy_config.inputs_device()):
input_queue = create_input_queue(create_tensor_dict_fn)
# Gather initial summaries.
# TODO(rathodv): See if summaries can be added/extracted from global tf
# collections so that they don't have to be passed around.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
global_summaries = set([])
model_fn = functools.partial(
_create_losses,
create_model_fn=create_model_fn,
train_config=train_config)
clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
first_clone_scope = clones[0].scope
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by model_fn.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
with tf.device(deploy_config.optimizer_device()):
training_optimizer, optimizer_summary_vars = optimizer_builder.build(
train_config.optimizer)
for var in optimizer_summary_vars:
tf.summary.scalar(var.op.name, var)
sync_optimizer = None
if train_config.sync_replicas:
training_optimizer = tf.train.SyncReplicasOptimizer(
training_optimizer,
replicas_to_aggregate=train_config.replicas_to_aggregate,
total_num_replicas=train_config.worker_replicas)
sync_optimizer = training_optimizer
# Create ops required to initialize the model from a given checkpoint.
init_fn = None
if train_config.fine_tune_checkpoint:
restore_checkpoints = [
path.strip() for path in train_config.fine_tune_checkpoint.split(',')
]
restorers = get_restore_checkpoint_ops(restore_checkpoints,
detection_model, train_config)
def initializer_fn(sess):
for i, restorer in enumerate(restorers):
restorer.restore(sess, restore_checkpoints[i])
init_fn = initializer_fn
with tf.device(deploy_config.optimizer_device()):
regularization_losses = (
None if train_config.add_regularization_loss else [])
total_loss, grads_and_vars = model_deploy.optimize_clones(
clones,
training_optimizer,
regularization_losses=regularization_losses)
total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.')
# Optionally multiply bias gradients by train_config.bias_grad_multiplier.
if train_config.bias_grad_multiplier:
biases_regex_list = ['.*/biases']
grads_and_vars = variables_helper.multiply_gradients_matching_regex(
grads_and_vars,
biases_regex_list,
multiplier=train_config.bias_grad_multiplier)
# Optionally clip gradients
if train_config.gradient_clipping_by_norm > 0:
with tf.name_scope('clip_grads'):
grads_and_vars = slim.learning.clip_gradient_norms(
grads_and_vars, train_config.gradient_clipping_by_norm)
moving_average_variables = slim.get_model_variables()
variable_averages = tf.train.ExponentialMovingAverage(0.9999, global_step)
update_ops.append(variable_averages.apply(moving_average_variables))
# Create gradient updates.
grad_updates = training_optimizer.apply_gradients(
grads_and_vars, global_step=global_step)
update_ops.append(grad_updates)
update_op = tf.group(*update_ops, name='update_barrier')
with tf.control_dependencies([update_op]):
train_tensor = tf.identity(total_loss, name='train_op')
if graph_hook_fn:
with tf.device(deploy_config.variables_device()):
graph_hook_fn()
# Add summaries.
for model_var in slim.get_model_variables():
global_summaries.add(tf.summary.histogram(model_var.op.name, model_var))
for loss_tensor in tf.losses.get_losses():
global_summaries.add(tf.summary.scalar(loss_tensor.op.name, loss_tensor))
global_summaries.add(
tf.summary.scalar('TotalLoss', tf.losses.get_total_loss()))
# Add the summaries from the first clone. These contain the summaries
# created by model_fn and either optimize_clones() or _gather_clone_loss().
summaries |= set(
tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES, 'critic_loss'))
summaries |= global_summaries
# Merge all summaries together.
summary_op = tf.summary.merge(list(summaries), name='summary_op')
# Soft placement allows placing on CPU ops without GPU implementation.
session_config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False)
# Save checkpoints regularly.
keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
saver = tf.train.Saver(
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
slim.learning.train(
train_tensor,
logdir=train_dir,
master=master,
is_chief=is_chief,
session_config=session_config,
startup_delay_steps=train_config.startup_delay_steps,
init_fn=init_fn,
summary_op=summary_op,
number_of_steps=(train_config.num_steps
if train_config.num_steps else None),
save_summaries_secs=120,
sync_optimizer=sync_optimizer,
saver=saver)