-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
58 lines (46 loc) · 1.96 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from skimage import io,transform
import tensorflow as tf
import numpy as np
path1 = "C:\\Users\litan\Desktop\ise\CNN\elower_photos\elower_photos/daisy/5547758_eea9edfd54_n.jpg"
path2 = "C:\\Users\litan\Desktop\ise\CNN\elower_photos\elower_photos/dandelion/7355522_b66e5d3078_m.jpg"
path3 = "C:\\Users\litan\Desktop\ise\CNN\elower_photos\elower_photos/roses/394990940_7af082cf8d_n.jpg"
path4 = "C:\\Users\litan\Desktop\ise\CNN\elower_photos\elower_photos/sunflowers/6953297_8576bf4ea3.jpg"
path5 = "C:\\Users\litan\Desktop\ise\CNN\elower_photos\elower_photos/tulips/10791227_7168491604.jpg"
flower_dict = {0:'dasiy',1:'dandelion',2:'roses',3:'sunflowers',4:'tulips'}
w=100
h=100
c=3
def read_one_image(path):
img = io.imread(path)
img = transform.resize(img,(w,h))
return np.asarray(img)
with tf.Session() as sess:
data = []
data1 = read_one_image(path1)
data2 = read_one_image(path2)
data3 = read_one_image(path3)
data4 = read_one_image(path4)
data5 = read_one_image(path5)
data.append(data1)
data.append(data2)
data.append(data3)
data.append(data4)
data.append(data5)
saver = tf.train.import_meta_graph('C:\\Users\litan\Desktop\ise\CNN\model.ckpt.meta')
saver.restore(sess,tf.train.latest_checkpoint('C:\\Users\litan\Desktop\ise\CNN'))
graph = tf.get_default_graph()
x = graph.get_tensor_by_name("x:0")
feed_dict = {x:data}
logits = graph.get_tensor_by_name("logits_eval:0")
classification_result = sess.run(logits,feed_dict)
#打印出预测矩阵
print(classification_result)
#打印出预测矩阵每一行最大值的索引
print(tf.argmax(classification_result,1).eval())
#根据索引通过字典对应花的分类
output = []
output = tf.argmax(classification_result,1).eval()
for i in range(len(output)):
print("第",i+1,"朵花预测:"+flower_dict[output[i]])