Gaussian functions are often used to represent the probability density function of a normally distributed random variable with the expected value (mean) mu
and variance sigma^2
.
- Evaluations
- the max value of the Gaussian function is obtained when
x = mu
- different mean
mu
shifts the distribution toward+
or-
of the x-axis - larger the variance
sigma^2
, wider the spread of distribution
- the max value of the Gaussian function is obtained when
- Kalman filter represents our distributions by Gaussian and iterates on two main cycles
- First cycle: measurement update
- requires a product/multiplication
- uses Bayes rule
- Second cycle: motion update (prediction)
- involves a convolution
- uses total probability
- First cycle: measurement update
- Shift of the mean
- the new belief will be somewhere between the previous belief and the new measurement
- Predict the peak
- the new belief will be more certain than either the previous belief or the new measurement
- because more measurements means greater certainty
The mean and variance of the new Gaussian can be calculated by the following equations.
The Gaussian parameters for motion update are much simpler than measurement update, just adding the two means and two variance to yield the new ones.
# iteratively update and predict based on the location measurements and inferred motions shown below.
def update(mean1, var1, mean2, var2):
new_mean = float(var2 * mean1 + var1 * mean2) / (var1 + var2)
new_var = 1./(1./var1 + 1./var2)
return [new_mean, new_var]
def predict(mean1, var1, mean2, var2):
new_mean = mean1 + mean2
new_var = var1 + var2
return [new_mean, new_var]
measurements = [5., 6., 7., 9., 10.]
motion = [1., 1., 2., 1., 1.]
measurement_sig = 4.
motion_sig = 2.
mu = 0.
sig = 10000.
for n in range(len(measurements)):
[mu, sig] = update(mu, sig, measurements[n], measurement_sig)
print 'update: ', [mu, sig]
[mu, sig] = predict(mu, sig, motion[n], motion_sig)
print 'predict: ', [mu, sig]
High Dimensional Gaussian or Multivariate Gaussian features a k-dimensional mean vector, and a k x k covariance matrix.
For a Kalman filter for vehicle, the two dimensions to use are location and velocity.
x
: location estimation
P
: uncertainty covariance
F
: state transition matrix
v
: motion vector
Z
: measurement
H
: measurement function
y
: error
S
: matrix projecting the system uncertainty into the measurement space
R
: measurement noise matrix
K
: Kalman filter gain, combining the uncertainty of where we think we are P
and uncertainty of sensor measurement R
. If P > R
, KF will give more weight to sensor measurement z
. If P < R
, more weight will be put on predicted x
.
I
: identity matrix
from math import *
class matrix:
'''
implements basic operations of a matrix class
'''
def __init__(self, value):
self.value = value
self.dimx = len(value)
self.dimy = len(value[0])
if value == [[]]:
self.dimx = 0
def zero(self, dimx, dimy):
# check if valid dimensions
if dimx < 1 or dimy < 1:
raise ValueError, "Invalid size of matrix"
else:
self.dimx = dimx
self.dimy = dimy
self.value = [[0 for row in range(dimy)] for col in range(dimx)]
def identity(self, dim):
# check if valid dimension
if dim < 1:
raise ValueError, "Invalid size of matrix"
else:
self.dimx = dim
self.dimy = dim
self.value = [[0 for row in range(dim)] for col in range(dim)]
for i in range(dim):
self.value[i][i] = 1
def show(self):
for i in range(self.dimx):
print(self.value[i])
print(' ')
def __add__(self, other):
# check if correct dimensions
if self.dimx != other.dimx or self.dimy != other.dimy:
raise ValueError, "Matrices must be of equal dimensions to add"
else:
# add if correct dimensions
res = matrix([[]])
res.zero(self.dimx, self.dimy)
for i in range(self.dimx):
for j in range(self.dimy):
res.value[i][j] = self.value[i][j] + other.value[i][j]
return res
def __sub__(self, other):
# check if correct dimensions
if self.dimx != other.dimx or self.dimy != other.dimy:
raise ValueError, "Matrices must be of equal dimensions to subtract"
else:
# subtract if correct dimensions
res = matrix([[]])
res.zero(self.dimx, self.dimy)
for i in range(self.dimx):
for j in range(self.dimy):
res.value[i][j] = self.value[i][j] - other.value[i][j]
return res
def __mul__(self, other):
# check if correct dimensions
if self.dimy != other.dimx:
raise ValueError, "Matrices must be m*n and n*p to multiply"
else:
# multiply if correct dimensions
res = matrix([[]])
res.zero(self.dimx, other.dimy)
for i in range(self.dimx):
for j in range(other.dimy):
for k in range(self.dimy):
res.value[i][j] += self.value[i][k] * other.value[k][j]
return res
def transpose(self):
# compute transpose
res = matrix([[]])
res.zero(self.dimy, self.dimx)
for i in range(self.dimx):
for j in range(self.dimy):
res.value[j][i] = self.value[i][j]
return res
# Thanks to Ernesto P. Adorio for use of Cholesky and CholeskyInverse functions
def Cholesky(self, ztol=1.0e-5):
# Computes the upper triangular Cholesky factorization of
# a positive definite matrix.
res = matrix([[]])
res.zero(self.dimx, self.dimx)
for i in range(self.dimx):
S = sum([(res.value[k][i])**2 for k in range(i)])
d = self.value[i][i] - S
if abs(d) < ztol:
res.value[i][i] = 0.0
else:
if d < 0.0:
raise ValueError, "Matrix not positive-definite"
res.value[i][i] = sqrt(d)
for j in range(i+1, self.dimx):
S = sum([res.value[k][i] * res.value[k][j] for k in range(self.dimx)])
if abs(S) < ztol:
S = 0.0
try:
res.value[i][j] = (self.value[i][j] - S)/res.value[i][i]
except:
raise ValueError, "Zero diagonal"
return res
def CholeskyInverse(self):
# Computes inverse of matrix given its Cholesky upper Triangular
# decomposition of matrix.
res = matrix([[]])
res.zero(self.dimx, self.dimx)
# Backward step for inverse.
for j in reversed(range(self.dimx)):
tjj = self.value[j][j]
S = sum([self.value[j][k]*res.value[j][k] for k in range(j+1, self.dimx)])
res.value[j][j] = 1.0/tjj**2 - S/tjj
for i in reversed(range(j)):
res.value[j][i] = res.value[i][j] = -sum([self.value[i][k]*res.value[k][j] for k in range(i+1, self.dimx)])/self.value[i][i]
return res
def inverse(self):
aux = self.Cholesky()
res = aux.CholeskyInverse()
return res
def __repr__(self):
return repr(self.value)
# KF implementation
def kalman_filter(x, P):
for n in range(len(measurements)):
# measurement update
Z = matrix([[measurements[n]]])
y = Z - (H * x)
S = H * P * H.transpose() + R
K = P * H.transpose() * S.inverse()
x = x + (K * y)
P = (I - (K * H)) * P
# prediction
x = (F * x) + u
P = F * P * F.transpose()
# return location estimation, uncertainty covariance
return x, P
# Test Below
measurements = [1, 2, 3]
x = matrix([[0.], [0.]]) # initial state (location and velocity)
P = matrix([[1000., 0.], [0., 1000.]]) # initial uncertainty
u = matrix([[0.], [0.]]) # external motion
F = matrix([[1., 1.], [0, 1.]]) # next state function
H = matrix([[1., 0.]]) # measurement function
R = matrix([[1.]]) # measurement uncertainty
I = matrix([[1., 0.], [0., 1.]]) # identity matrix
print(kalman_filter(x, P))
# output should be:
# x: [[3.9996664447958645], [0.9999998335552873]]
# P: [[2.3318904241194827, 0.9991676099921091], [0.9991676099921067, 0.49950058263974184]]