Skip to content

Latest commit

 

History

History
274 lines (222 loc) · 9.32 KB

lec4-1-kalman-filters.md

File metadata and controls

274 lines (222 loc) · 9.32 KB

Lecture 4-1 Kalman Filters

I. Gaussian Function

Gaussian functions are often used to represent the probability density function of a normally distributed random variable with the expected value (mean) mu and variance sigma^2.

  • Evaluations
    • the max value of the Gaussian function is obtained when x = mu
    • different mean mu shifts the distribution toward + or - of the x-axis
    • larger the variance sigma^2, wider the spread of distribution

II. Kalman Filter

  • Kalman filter represents our distributions by Gaussian and iterates on two main cycles
    • First cycle: measurement update
      • requires a product/multiplication
      • uses Bayes rule
    • Second cycle: motion update (prediction)
      • involves a convolution
      • uses total probability

Measurement update

  • Shift of the mean
    • the new belief will be somewhere between the previous belief and the new measurement
  • Predict the peak
    • the new belief will be more certain than either the previous belief or the new measurement
    • because more measurements means greater certainty

The mean and variance of the new Gaussian can be calculated by the following equations.

Motion update (Prediction)

The Gaussian parameters for motion update are much simpler than measurement update, just adding the two means and two variance to yield the new ones.

Python implementation

# iteratively update and predict based on the location measurements and inferred motions shown below. 

def update(mean1, var1, mean2, var2):
    new_mean = float(var2 * mean1 + var1 * mean2) / (var1 + var2)
    new_var = 1./(1./var1 + 1./var2)
    return [new_mean, new_var]

def predict(mean1, var1, mean2, var2):
    new_mean = mean1 + mean2
    new_var = var1 + var2
    return [new_mean, new_var]

measurements = [5., 6., 7., 9., 10.]
motion = [1., 1., 2., 1., 1.]
measurement_sig = 4.
motion_sig = 2.
mu = 0.
sig = 10000.

for n in range(len(measurements)):
    [mu, sig] = update(mu, sig, measurements[n], measurement_sig)
    print 'update: ', [mu, sig]
    [mu, sig] = predict(mu, sig, motion[n], motion_sig)
    print 'predict: ', [mu, sig]

III. Kalman Filter Design

High Dimensional Gaussian or Multivariate Gaussian features a k-dimensional mean vector, and a k x k covariance matrix.

For a Kalman filter for vehicle, the two dimensions to use are location and velocity.

KF Design

x: location estimation P: uncertainty covariance F: state transition matrix v: motion vector Z: measurement H: measurement function y: error S: matrix projecting the system uncertainty into the measurement space R: measurement noise matrix K: Kalman filter gain, combining the uncertainty of where we think we are P and uncertainty of sensor measurement R. If P > R, KF will give more weight to sensor measurement z. If P < R, more weight will be put on predicted x. I: identity matrix

from math import *

class matrix:
    '''
    implements basic operations of a matrix class
    '''
    def __init__(self, value):
        self.value = value
        self.dimx = len(value)
        self.dimy = len(value[0])
        if value == [[]]:
            self.dimx = 0
    
    def zero(self, dimx, dimy):
        # check if valid dimensions
        if dimx < 1 or dimy < 1:
            raise ValueError, "Invalid size of matrix"
        else:
            self.dimx = dimx
            self.dimy = dimy
            self.value = [[0 for row in range(dimy)] for col in range(dimx)]
    
    def identity(self, dim):
        # check if valid dimension
        if dim < 1:
            raise ValueError, "Invalid size of matrix"
        else:
            self.dimx = dim
            self.dimy = dim
            self.value = [[0 for row in range(dim)] for col in range(dim)]
            for i in range(dim):
                self.value[i][i] = 1
    
    def show(self):
        for i in range(self.dimx):
            print(self.value[i])
        print(' ')
    
    def __add__(self, other):
        # check if correct dimensions
        if self.dimx != other.dimx or self.dimy != other.dimy:
            raise ValueError, "Matrices must be of equal dimensions to add"
        else:
            # add if correct dimensions
            res = matrix([[]])
            res.zero(self.dimx, self.dimy)
            for i in range(self.dimx):
                for j in range(self.dimy):
                    res.value[i][j] = self.value[i][j] + other.value[i][j]
            return res
    
    def __sub__(self, other):
        # check if correct dimensions
        if self.dimx != other.dimx or self.dimy != other.dimy:
            raise ValueError, "Matrices must be of equal dimensions to subtract"
        else:
            # subtract if correct dimensions
            res = matrix([[]])
            res.zero(self.dimx, self.dimy)
            for i in range(self.dimx):
                for j in range(self.dimy):
                    res.value[i][j] = self.value[i][j] - other.value[i][j]
            return res
    
    def __mul__(self, other):
        # check if correct dimensions
        if self.dimy != other.dimx:
            raise ValueError, "Matrices must be m*n and n*p to multiply"
        else:
            # multiply if correct dimensions
            res = matrix([[]])
            res.zero(self.dimx, other.dimy)
            for i in range(self.dimx):
                for j in range(other.dimy):
                    for k in range(self.dimy):
                        res.value[i][j] += self.value[i][k] * other.value[k][j]
            return res
    
    def transpose(self):
        # compute transpose
        res = matrix([[]])
        res.zero(self.dimy, self.dimx)
        for i in range(self.dimx):
            for j in range(self.dimy):
                res.value[j][i] = self.value[i][j]
        return res
    
    # Thanks to Ernesto P. Adorio for use of Cholesky and CholeskyInverse functions
    
    def Cholesky(self, ztol=1.0e-5):
        # Computes the upper triangular Cholesky factorization of
        # a positive definite matrix.
        res = matrix([[]])
        res.zero(self.dimx, self.dimx)
        
        for i in range(self.dimx):
            S = sum([(res.value[k][i])**2 for k in range(i)])
            d = self.value[i][i] - S
            if abs(d) < ztol:
                res.value[i][i] = 0.0
            else:
                if d < 0.0:
                    raise ValueError, "Matrix not positive-definite"
                res.value[i][i] = sqrt(d)
            for j in range(i+1, self.dimx):
                S = sum([res.value[k][i] * res.value[k][j] for k in range(self.dimx)])
                if abs(S) < ztol:
                    S = 0.0
                try:
                   res.value[i][j] = (self.value[i][j] - S)/res.value[i][i]
                except:
                   raise ValueError, "Zero diagonal"
        return res
    
    def CholeskyInverse(self):
        # Computes inverse of matrix given its Cholesky upper Triangular
        # decomposition of matrix.
        res = matrix([[]])
        res.zero(self.dimx, self.dimx)
        
        # Backward step for inverse.
        for j in reversed(range(self.dimx)):
            tjj = self.value[j][j]
            S = sum([self.value[j][k]*res.value[j][k] for k in range(j+1, self.dimx)])
            res.value[j][j] = 1.0/tjj**2 - S/tjj
            for i in reversed(range(j)):
                res.value[j][i] = res.value[i][j] = -sum([self.value[i][k]*res.value[k][j] for k in range(i+1, self.dimx)])/self.value[i][i]
        return res
    
    def inverse(self):
        aux = self.Cholesky()
        res = aux.CholeskyInverse()
        return res
    
    def __repr__(self):
        return repr(self.value)

# KF implementation
def kalman_filter(x, P):
    for n in range(len(measurements)):
        # measurement update
        Z = matrix([[measurements[n]]])
        y = Z - (H * x)
        S = H * P * H.transpose() + R
        K = P * H.transpose() * S.inverse()
        x = x + (K * y)
        P = (I - (K * H)) * P

        # prediction
        x = (F * x) + u
        P = F * P * F.transpose()
    
    # return location estimation, uncertainty covariance
    return x, P

# Test Below
measurements = [1, 2, 3]

x = matrix([[0.], [0.]]) # initial state (location and velocity)
P = matrix([[1000., 0.], [0., 1000.]]) # initial uncertainty
u = matrix([[0.], [0.]]) # external motion
F = matrix([[1., 1.], [0, 1.]]) # next state function
H = matrix([[1., 0.]]) # measurement function
R = matrix([[1.]]) # measurement uncertainty
I = matrix([[1., 0.], [0., 1.]]) # identity matrix

print(kalman_filter(x, P))
# output should be:
# x: [[3.9996664447958645], [0.9999998335552873]]
# P: [[2.3318904241194827, 0.9991676099921091], [0.9991676099921067, 0.49950058263974184]]

IV. Equation Cheatsheet

Sensor Fusion EKF Reference.pdf