forked from DouniaLakhmiri/ICLR_HAET2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_mix.py
46 lines (35 loc) · 1.17 KB
/
conv_mix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# from https://arxiv.org/pdf/2201.09792v1.pdf
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import time
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x):
return self.fn(x) + x
def ConvMixer(dim, depth, kernel_size=5, patch_size=2, n_classes=10):
return nn.Sequential(
nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size),
nn.GELU(),
nn.BatchNorm2d(dim),
*[nn.Sequential(
Residual(nn.Sequential(
nn.Conv2d(dim, dim, kernel_size, groups=dim, padding="same"),
nn.GELU(),
nn.BatchNorm2d(dim)
)),
nn.Conv2d(dim, dim, kernel_size=1),
nn.GELU(),
nn.BatchNorm2d(dim)
) for i in range(depth)],
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(),
nn.Linear(dim, n_classes)
)
# opt = optim.AdamW(model.parameters(), lr=args.lr_max, weight_decay=args.wd)
# criterion = nn.CrossEntropyLoss()
# scaler = torch.cuda.amp.GradScaler()