-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathztimer.h
124 lines (107 loc) · 3 KB
/
ztimer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/**
* This code is released under the
* Apache License Version 2.0 http://www.apache.org/licenses/.
*/
#ifndef ZTIMER_H_
#define ZTIMER_H_
#include "common.h"
namespace FastPForLib {
//
// VS2012 bug: high_precision_clock is defined as system_clock and precision is
// about 15 MS!!
// See: https://connect.microsoft.com/VisualStudio/feedback/details/719443
//
// Implementation has been taken from a post on stackoverflow and adapted here
// http://stackoverflow.com/questions/13263277/difference-between-stdsystem-clock-and-stdsteady-clock
//
#ifdef _WIN32
#define NOMINMAX
#define WINDOWS_LEAN_AND_MEAN
#include <windows.h>
struct qpc_clock {
typedef std::chrono::nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef std::chrono::time_point<qpc_clock, duration> time_point;
static time_point now() {
static bool isInited = false;
static LARGE_INTEGER frequency = {{0, 0}};
if (!isInited) {
if (QueryPerformanceFrequency(&frequency) == 0) {
throw std::logic_error("QueryPerformanceCounter not supported: " +
std::to_string(GetLastError()));
}
isInited = true;
}
LARGE_INTEGER counter;
QueryPerformanceCounter(&counter);
return time_point(duration(static_cast<rep>((double)counter.QuadPart /
frequency.QuadPart *
period::den / period::num)));
}
};
#endif
/**
* author: Preston Bannister
*/
class WallClockTimer {
public:
#ifdef _WIN32
typedef qpc_clock clock;
#else
typedef std::chrono::high_resolution_clock clock;
#endif
std::chrono::time_point<clock> t1, t2;
WallClockTimer() : t1(), t2() {
t1 = clock::now();
t2 = t1;
}
void reset() {
t1 = clock::now();
t2 = t1;
}
uint64_t elapsed() {
std::chrono::microseconds delta =
std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1);
return delta.count();
}
uint64_t split() {
t2 = clock::now();
return elapsed();
}
};
#ifndef _WIN32
class CPUTimer {
public:
// clock_t t1, t2;
struct rusage t1, t2;
CPUTimer() : t1(), t2() {
getrusage(RUSAGE_SELF, &t1);
// t1 = clock();
t2 = t1;
}
void reset() {
getrusage(RUSAGE_SELF, &t1);
t2 = t1;
}
// proxy for userelapsed
uint64_t elapsed() { return totalelapsed(); }
uint64_t totalelapsed() { return userelapsed() + systemelapsed(); }
// returns the *user* CPU time in micro seconds (mu s)
uint64_t userelapsed() {
return ((t2.ru_utime.tv_sec - t1.ru_utime.tv_sec) * 1000ULL * 1000ULL) +
((t2.ru_utime.tv_usec - t1.ru_utime.tv_usec));
}
// returns the *system* CPU time in micro seconds (mu s)
uint64_t systemelapsed() {
return ((t2.ru_stime.tv_sec - t1.ru_stime.tv_sec) * 1000ULL * 1000ULL) +
((t2.ru_stime.tv_usec - t1.ru_stime.tv_usec));
}
uint64_t split() {
getrusage(RUSAGE_SELF, &t2);
return elapsed();
}
};
#endif
} // namespace FastPForLib
#endif /* ZTIMER_H_ */