Skip to content

Latest commit

 

History

History
47 lines (30 loc) · 3.52 KB

models.md

File metadata and controls

47 lines (30 loc) · 3.52 KB

PP-OCR模型库

PP-OCR模型一节主要补充一些OCR模型的基本概念以及如何快速运用PP-OCR模型库中的模型。

本节包含两个部分,首先在PP-OCR模型下载中解释PP-OCR模型的类型概念,并提供所有模型的下载链接。然后在基于Python引擎的PP-OCR模型库推理中介绍PP-OCR模型库的使用方法,可以通过Python推理引擎快速利用丰富的模型库模型获得测试结果。


下面我们首先了解一些OCR相关的基本概念:

1. OCR 简要介绍

本节简要介绍OCR检测模型、识别模型的基本概念,并介绍PaddleOCR的PP-OCR模型。

OCR(Optical Character Recognition,光学字符识别)目前是文字识别的统称,已不限于文档或书本文字识别,更包括识别自然场景下的文字,又可以称为STR(Scene Text Recognition)。

OCR文字识别一般包括两个部分,文本检测和文本识别;文本检测首先利用检测算法检测到图像中的文本行;然后检测到的文本行用识别算法去识别到具体文字。

1.1 OCR 检测模型基本概念

文本检测就是要定位图像中的文字区域,然后通常以边界框的形式将单词或文本行标记出来。传统的文字检测算法多是通过手工提取特征的方式,特点是速度快,简单场景效果好,但是面对自然场景,效果会大打折扣。当前多是采用深度学习方法来做。

基于深度学习的文本检测算法可以大致分为以下几类:

  1. 基于目标检测的方法;一般是预测得到文本框后,通过NMS筛选得到最终文本框,多是四点文本框,对弯曲文本场景效果不理想。典型算法为EAST、Text Box等方法。
  2. 基于分割的方法;将文本行当成分割目标,然后通过分割结果构建外接文本框,可以处理弯曲文本,对于文本交叉场景问题效果不理想。典型算法为DB、PSENet等方法。
  3. 混合目标检测和分割的方法;

1.2 OCR 识别模型基本概念

OCR识别算法的输入数据一般是文本行,背景信息不多,文字占据主要部分,识别算法目前可以分为两类算法:

  1. 基于CTC的方法;即识别算法的文字预测模块是基于CTC的,常用的算法组合为CNN+RNN+CTC。目前也有一些算法尝试在网络中加入transformer模块等等。
  2. 基于Attention的方法;即识别算法的文字预测模块是基于Attention的,常用算法组合是CNN+RNN+Attention。

1.3 PP-OCR模型

PaddleOCR 中集成了很多OCR算法,文本检测算法有DB、EAST、SAST等等,文本识别算法有CRNN、RARE、StarNet、Rosetta、SRN等算法。

其中PaddleOCR针对中英文自然场景通用OCR,推出了PP-OCR系列模型,PP-OCR模型由DB+CRNN算法组成,利用海量中文数据训练加上模型调优方法,在中文场景上具备较高的文本检测识别能力。并且PaddleOCR推出了高精度超轻量PP-OCRv2模型,检测模型仅3M,识别模型仅8.5M,利用PaddleSlim的模型量化方法,可以在保持精度不降低的情况下,将检测模型压缩到0.8M,识别压缩到3M,更加适用于移动端部署场景。