-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
266 lines (186 loc) · 7.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import division
from __future__ import print_function
import time
import datetime
import os
import pickle
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from utils import *
from models_dmon import *
from sklearn.metrics import normalized_mutual_info_score as nmi
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=200,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=1e-3,
help='Initial learning rate.')
parser.add_argument('--lr-decay', type=int, default=200,
help='After how epochs to decay LR by a factor of gamma.')
parser.add_argument('--gamma', type=float, default=0.5,
help='LR decay factor.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=64,
help='Number of hidden units.')
parser.add_argument('--out', type=int, default=32,
help='Number of hidden units.')
parser.add_argument('--n-clusters', type=int, default=10,
help='Number of output units.')
parser.add_argument('--gcn-type', type=str, default="dmon",
help="type of GCN")
parser.add_argument('--gcn-activation', type=str, default="selu",
help="activation function for gcn")
parser.add_argument("--collapse-regularization", type=float, default=1.,
help="collapse regularization.")
parser.add_argument('--dropout', type=float, default=0.3,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--save-folder', type=str, default='logs/dmon',
help='Where to save the trained model, leave empty to not save anything.')
parser.add_argument('--load-folder', type=str, default='',
help='Where to load the trained model if finetunning. ' +
'Leave empty to train from scratch')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
#Save model and meta-data
if args.save_folder:
exp_counter = 0
now = datetime.datetime.now()
timestamp = now.isoformat()
save_folder = '{}/exp{}/'.format(args.save_folder, timestamp)
os.mkdir(save_folder)
meta_file = os.path.join(save_folder, 'metadata.pkl')
model_file = os.path.join(save_folder, "model.pt")
log_file = os.path.join(save_folder, 'log.txt')
log = open(log_file, 'w')
pickle.dump({'args': args}, open(meta_file, "wb"))
else:
print("WARNING: No save_folder provided!" +
"Testing (within this script) will throw an error.")
adj, features, labels, label_indices = load_npz("data/cora.npz")
adj_tensor = torch.tensor(adj.todense()).unsqueeze(0).float()
features_tensor = torch.tensor(features.todense()).unsqueeze(0).float()
model = GCN_DMoN(features_tensor.size(-1), args.hidden, args.out ,args.n_clusters,
args.gcn_type, args.gcn_activation, args.collapse_regularization,
args.dropout)
if args.load_folder:
model_file = os.path.join(args.load_folder, 'model.pt')
model.load_state_dict(torch.load(model_file))
if args.cuda:
model = model.to("cuda")
features_tensor = features_tensor.to("cuda")
#features_valid.cuda()
#features_test.cuda()
adj_tensor = adj_tensor.to("cuda")
#adj_valid.cuda()
#adj_test.cuda()
optimizer = optim.Adam(list(model.parameters()),
lr=args.lr, weight_decay=args.weight_decay)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_decay,
gamma=args.gamma)
"""
if args.cuda:
model = model.to("cuda")
features_tensor = features_tensor.to("cuda")
#features_valid.cuda()
#features_test.cuda()
adj_tensor = adj_tensor.to("cuda")
#adj_valid.cuda()
#adj_test.cuda()
"""
def train(epoch, best_val_loss):
t = time.time()
loss_train = []
sp_loss_train = []
co_loss_train = []
model.train()
optimizer.zero_grad()
#print(next(model.parameters()).device)
#print(adj_tensor.device)
#print(features_tensor.device)
assignments, spectral_loss, collapse_loss = model(adj_tensor, features_tensor)
loss = spectral_loss+collapse_loss
loss.backward()
optimizer.step()
loss_train.append(loss.item())
sp_loss_train.append(spectral_loss.item())
co_loss_train.append(collapse_loss.item())
loss_val = []
sp_loss_val = []
co_loss_val = []
model.eval()
with torch.no_grad():
assignments, spectral_loss, collapse_loss = model(adj_tensor, features_tensor)
loss = spectral_loss+collapse_loss
loss_val.append(loss.item())
sp_loss_val.append(spectral_loss.item())
co_loss_val.append(collapse_loss.item())
print("Epoch: {:04d}".format(epoch+1),
"loss_train: {:.10f}".format(loss_train[0]),
"sp_loss_train: {:.10f}".format(sp_loss_train[0]),
"co_loss_train: {:.10f}".format(co_loss_train[0]),
"loss_val: {:.10f}".format(loss_val[0]),
"sp_loss_val: {:.10f}".format(sp_loss_val[0]),
"co_loss_val: {:.10f}".format(co_loss_val[0]))
if args.save_folder and np.mean(loss_val) < best_val_loss:
torch.save(model.state_dict(), model_file)
print('Best model so far, saving...')
print("Epoch: {:04d}".format(epoch+1),
"loss_train: {:.10f}".format(loss_train[0]),
"sp_loss_train: {:.10f}".format(sp_loss_train[0]),
"co_loss_train: {:.10f}".format(co_loss_train[0]),
"loss_val: {:.10f}".format(loss_val[0]),
"sp_loss_val: {:.10f}".format(sp_loss_val[0]),
"co_loss_val: {:.10f}".format(co_loss_val[0]),
file=log)
log.flush()
return np.mean(loss_val)
def test():
print("Test model")
model_file = os.path.join(save_folder, 'model.pt')
model.load_state_dict(torch.load(model_file))
loss_test = []
sp_loss_test = []
co_loss_test = []
model.eval()
with torch.no_grad():
assignments, spectral_loss, collapse_loss = model(adj_tensor, features_tensor)
loss = spectral_loss+collapse_loss
loss_test.append(loss.item())
sp_loss_test.append(spectral_loss.item())
co_loss_test.append(collapse_loss.item())
clusters = assignments.cpu().argmax(-1).squeeze().numpy()
nmi_value = nmi(clusters[label_indices], labels)
print("Epoch: {:04d}".format(epoch+1),
"loss_test: {:.10f}".format(loss_test[0]),
"sp_loss_test: {:.10f}".format(sp_loss_test[0]),
"co_loss_test: {:.10f}".format(co_loss_test[0]),
"nmi_value: {:.10f}".format(nmi_value)
)
#Train model
t_total = time.time()
best_val_loss = np.inf
best_epoch = 0
for epoch in range(args.epochs):
val_loss = train(epoch, best_val_loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_epoch = epoch
print("Optimization Finished!")
print("Best Epoch: {:04d}".format(best_epoch+1))
if args.save_folder:
print("Best Epoch: {:04d}".format(best_epoch), file=log)
log.flush()
test()