-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain_eval.py
302 lines (259 loc) · 14 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import json
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
from torch.nn.utils.rnn import pack_padded_sequence
from cococaption.pycocotools.coco import COCO
from cococaption.pycocoevalcap.eval import COCOEvalCap
import torch.backends.cudnn as cudnn
from models import *
from util import *
from dataset import *
#Model Parameters
emb_dim = 512 # dimension of word embeddings
attention_dim = 512 # attention hidden size
hidden_size = 512 # dimension of decoder RNN
cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead
# Training parameters
start_epoch = 0
epochs = 40 # number of epochs to train before finetuning the encoder. Set to 18 when finetuning ecoder
epochs_since_improvement = 0 # keeps track of number of epochs since there's been an improvement in validation BLEU
batch_size = 80 # set to 32 when finetuning the encoder
workers = 1 # number of workers for data-loading
encoder_lr = 1e-4 # learning rate for encoder. if fine-tuning, change to 1e-5 for CNN parameters only
decoder_lr = 5e-4 # learning rate for decoder
grad_clip = 0.1 # clip gradients at an absolute value of
best_cider = 0. # Current BLEU-4 score
print_freq = 100 # print training/validation stats every __ batches
fine_tune_encoder = False # set to true after 20 epochs
checkpoint = None # path to checkpoint, None at the begining
annFile = 'cococaptioncider/annotations/captions_val2014.json' # Location of validation annotations
def train(train_loader, encoder, decoder, criterion, encoder_optimizer, decoder_optimizer, epoch, vocab_size):
decoder.train() # train mode (dropout and batchnorm is used)
encoder.train()
losses = AverageMeter() # loss (per decoded word)
top5accs = AverageMeter() # top5 accuracy
# Batches
for i, (imgs, caps, caplens) in enumerate(train_loader):
# Move to GPU, if available
imgs = imgs.to(device)
caps = caps.to(device)
caplens = caplens.to(device)
# Forward prop.
enc_image, global_features = encoder(imgs)
predictions, alphas, betas, encoded_captions, decode_lengths, sort_ind = decoder(enc_image, global_features,
caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = encoded_captions[:, 1:]
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores, _ = pack_padded_sequence(predictions, decode_lengths, batch_first=True)
targets, _ = pack_padded_sequence(targets, decode_lengths, batch_first=True)
# Calculate loss
loss = criterion(scores, targets)
# Back prop.
decoder_optimizer.zero_grad()
if encoder_optimizer is not None:
encoder_optimizer.zero_grad()
loss.backward()
# Update weights
decoder_optimizer.step()
if encoder_optimizer is not None:
encoder_optimizer.step()
# Keep track of metrics
top5 = accuracy(scores, targets, 5)
losses.update(loss.item(), sum(decode_lengths))
top5accs.update(top5, sum(decode_lengths))
# Print status every print_freq iterations --> (print_freq * batch_size) images
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})\t'.format(epoch, i, len(train_loader),
loss=losses,
top5=top5accs))
def validate(val_loader, encoder, decoder, beam_size, epoch, vocab_size):
"""
Funtion to validate over the complete dataset
"""
encoder.eval()
decoder.eval()
results = []
for i, (img, image_id) in enumerate(tqdm(val_loader, desc="EVALUATING AT BEAM SIZE " + str(beam_size))):
k = beam_size
infinite_pred = False
# Encode
image = img.to(device) # (1, 3, 224, 224)
enc_image, global_features = encoder(image) # enc_image of shape (1,num_pixels,features)
# Flatten encoding
num_pixels = enc_image.size(1)
encoder_dim = enc_image.size(2)
# We'll treat the problem as having a batch size of k
enc_image = enc_image.expand(k, num_pixels, encoder_dim) # (k, num_pixels, encoder_dim)
# Tensor to store top k previous words at each step; now they're just <start>
k_prev_words = torch.LongTensor([[word_map['<start>']]] * k).to(device) # (k, 1)
# Tensor to store top k sequences; now they're just <start>
seqs = k_prev_words # (k, 1)
# Tensor to store top k sequences' scores; now they're just 0
top_k_scores = torch.zeros(k, 1).to(device) # (k, 1)
# Lists to store completed sequences, their alphas and scores
complete_seqs = list()
complete_seqs_scores = list()
# Start decoding
step = 1
h, c = decoder.init_hidden_state(enc_image)
spatial_image = F.relu(decoder.encoded_to_hidden(enc_image)) # (k,num_pixels,hidden_size)
global_image = F.relu(decoder.global_features(global_features)) # (1,embed_dim)
# s is a number less than or equal to k, because sequences are removed from this process once they hit <end>
while True:
embeddings = decoder.embedding(k_prev_words).squeeze(1) # (k,embed_dim)
inputs = torch.cat((embeddings, global_image.expand_as(embeddings)), dim = 1)
h, c, st = decoder.LSTM(inputs , (h, c)) # (batch_size_t, hidden_size)
# Run the adaptive attention model
out_l, _, _ = decoder.adaptive_attention(spatial_image, h, st)
# Compute the probability over the vocabulary
scores = decoder.fc(out_l) # (batch_size, vocab_size)
scores = F.log_softmax(scores, dim=1) # (s, vocab_size)
# (k,1) will be (k,vocab_size), then (k,vocab_size) + (s,vocab_size) --> (s, vocab_size)
scores = top_k_scores.expand_as(scores) + scores
# For the first step, all k points will have the same scores (since same k previous words, h, c)
if step == 1:
#Remember: torch.topk returns the top k scores in the first argument, and their respective indices in the second argument
top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s)
else:
# Unroll and find top scores, and their unrolled indices
top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True) # (s)
# Convert unrolled indices to actual indices of scores
prev_word_inds = top_k_words / vocab_size # (s)
next_word_inds = top_k_words % vocab_size # (s)
# Add new words to sequences, alphas
seqs = torch.cat([seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1)
# Which sequences are incomplete (didn't reach <end>)?
incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if next_word != word_map['<end>']]
complete_inds = list(set(range(len(next_word_inds))) - set(incomplete_inds))
# Set aside complete sequences
if len(complete_inds) > 0:
complete_seqs.extend(seqs[complete_inds].tolist())
complete_seqs_scores.extend(top_k_scores[complete_inds])
k -= len(complete_inds) # reduce beam length accordingly
if k == 0:
break
# Proceed with incomplete sequences
seqs = seqs[incomplete_inds]
h = h[prev_word_inds[incomplete_inds]]
c = c[prev_word_inds[incomplete_inds]]
spatial_image = spatial_image[prev_word_inds[incomplete_inds]]
top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1)
# Break if things have been going on too long
if step > 50:
infinite_pred = True
break
step += 1
if infinite_pred is not True:
i = complete_seqs_scores.index(max(complete_seqs_scores))
seq = complete_seqs[i]
else:
seq = seqs[0][:20]
seq = [seq[i].item() for i in range(len(seq))]
# Construct Sentence
sen_idx = [w for w in seq if w not in {word_map['<start>'], word_map['<end>'], word_map['<pad>']}]
sentence = ' '.join([rev_word_map[sen_idx[i]] for i in range(len(sen_idx))])
item_dict = {"image_id": image_id.item(), "caption": sentence}
results.append(item_dict)
print("Calculating Evalaution Metric Scores......\n")
resFile = 'cococaptioncider/results/captions_val2014_results_' + str(epoch) + '.json'
evalFile = 'cococaptioncider/results/captions_val2014_eval_' + str(epoch) + '.json'
# Calculate Evaluation Scores
with open(resFile, 'w') as wr:
json.dump(results,wr)
coco = COCO(annFile)
cocoRes = coco.loadRes(resFile)
# create cocoEval object by taking coco and cocoRes
cocoEval = COCOEvalCap(coco, cocoRes)
# evaluate on a subset of images
# please remove this line when evaluating the full validation set
cocoEval.params['image_id'] = cocoRes.getImgIds()
# evaluate results
cocoEval.evaluate()
# Save Scores for all images in resFile
with open(evalFile, 'w') as w:
json.dump(cocoEval.eval, w)
return cocoEval.eval['CIDEr'], cocoEval.eval['Bleu_4']
with open('caption data/WORDMAP_coco.json', 'r') as j:
word_map = json.load(j)
rev_word_map = {v: k for k, v in word_map.items()} # idx2word
if checkpoint is None:
decoder = DecoderWithAttention(hidden_size = hidden_size,
vocab_size = len(word_map),
att_dim = attention_dim,
embed_size = emb_dim,
encoded_dim = 2048)
encoder = Encoder(hidden_size = hidden_size, embed_size = emb_dim)
decoder_optimizer = torch.optim.Adam(params=decoder.parameters(),lr=decoder_lr, betas = (0.8,0.999))
encoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, encoder.parameters()),
lr=encoder_lr, betas = (0.8,0.999)) if fine_tune_encoder else None
else:
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch'] + 1
epochs_since_improvement = checkpoint['epochs_since_improvement']
best_cider = checkpoint['cider']
decoder = checkpoint['decoder']
decoder_optimizer = checkpoint['decoder_optimizer']
encoder = checkpoint['encoder']
encoder_optimizer = checkpoint['encoder_optimizer']
if fine_tune_encoder is True and encoder_optimizer is None:
encoder.fine_tune(fine_tune_encoder)
encoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, encoder.parameters()),lr=encoder_lr)
print("Finetuning the CNN")
# Move to GPU, if available
decoder = decoder.to(device)
encoder = encoder.to(device)
# Loss function
criterion = nn.CrossEntropyLoss().to(device)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_loader = torch.utils.data.DataLoader(COCOTrainDataset(transform=transforms.Compose([normalize])),
batch_size = batch_size,
shuffle=True,
pin_memory=True)
val_loader = torch.utils.data.DataLoader(COCOValidationDataset(transform=transforms.Compose([normalize])),
batch_size = 1,
shuffle=True,
pin_memory=True)
# Epochs
for epoch in range(start_epoch, epochs):
# Terminate training if there is no improvmenet for 8 epochs
if epochs_since_improvement == 8:
print("No Improvement for the last 6 epochs. Training Terminated")
break
# Decay the learning rate by 0.8 every 3 epochs
if epoch % 3 == 0 and epoch !=0:
adjust_learning_rate(decoder_optimizer, 0.8)
# One epoch's training
train(train_loader=train_loader,
encoder=encoder,
decoder=decoder,
criterion=criterion,
encoder_optimizer=encoder_optimizer,
decoder_optimizer=decoder_optimizer,
epoch=epoch,
vocab_size = len(word_map))
# One epoch's validation
recent_cider, recent_bleu4 = validate(val_loader = val_loader,
encoder = encoder,
decoder = decoder,
beam_size = 3,
epoch = epoch,
vocab_size = len(word_map))
print("Epoch {}:\tCIDEr Score: {}\tBLEU-4 Score: {}".format(epoch, recent_cider, recent_bleu4))
# Check if there was an improvement
is_best = recent_cider > best_cider
best_cider = max(recent_cider, best_cider)
if not is_best:
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
save_checkpoint(epoch, epochs_since_improvement, encoder, decoder, encoder_optimizer, decoder_optimizer, recent_cider, is_best)