-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
162 lines (129 loc) · 6.03 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
import pandas as pd
import numpy as np
from olympics import *
import matplotlib.pyplot as plt
import warnings
import math
warnings.simplefilter("ignore")
plt.style.use('fivethirtyeight')
MEDALS_COLOR_MAP = {'Gold':'#d4af37','Silver':'#aaa9ad','Bronze':'#cd7f32'}
MEDALS_COLUMN_MAP = {'Gold':1,'Silver':2,'Bronze':3}
NUMBER_TO_MEDALS_MAP = {1:'Gold',2:'Silver',3:'Bronze'}
#APP STARTS HERE
#CONTENT ON THE SIDE BAR
st.sidebar.title('Olympics Data')
#CONTENT ON THE CENTRAL PART OF THE PAGE
selected_year = st.sidebar.number_input('Select Competition Year',1896,2016,2016,step=4)
selected_country = st.sidebar.selectbox('Select Country',regions_list,index=197)
country = Country(selected_country)
df = country.last_olympics_data(selected_year)
country.historical_olympics_data()
SPORTS = country.historical_sports_list
st.title(df.City.unique()[0]+" "+str(selected_year))
st.title("Team: "+selected_country)
#FIRST PLOT
df = country.last_olympics_medals_by_sport().fillna(0).astype(int)
if len(df)<1:
st.title("No Data for"+selected_country)
else:
st.subheader('Medals Won by Sport')
dct = country.last_olympics_info()
if df.sum().sum()<10:
for x in dct.keys():
st.write(x,":",dct[x])
else:
df.columns = df.columns.map(MEDALS_COLUMN_MAP).sort_values()
df.columns = df.columns.map(NUMBER_TO_MEDALS_MAP)
df.plot(kind='barh',stacked=True,figsize=(8,5),color=[MEDALS_COLOR_MAP.get(x, '#333333') for x in df.columns])
plt.tight_layout()
st.pyplot()
#FIRST TABLE
st.subheader('Medals Won by Athlete')
medals_by_athlete = country.last_olympics_medals_by_athlete()
selected_sport_in_athletes_table = st.selectbox(label="Filter Sport", options=SPORTS,index=3)
if st.checkbox('Show Whole Dataset'):
st.table(medals_by_athlete[medals_by_athlete.Sport==selected_sport_in_athletes_table].set_index("Name"))
else:
st.table(medals_by_athlete[medals_by_athlete.Sport==selected_sport_in_athletes_table].set_index("Name").head(5))
#CHECKBOX: WHEN CHECKED SHOWS HISTORICAL INFORMATION FOR THE SELECTED COUNTRY AND THE OLYMPICS IN GENERAL
historical_metrics = st.sidebar.checkbox(label="Show Historical Metrics",value=False)
if historical_metrics==True:
#HISTORICAL STATISTICS SECTION
st.header("Historical Stats")
st.subheader('Medals Won Over Time by '+selected_country)
#SECOND PLOT
plt.figure()
df = country.historical_olympics_data_medals_per_year()
df.columns = df.columns.map(MEDALS_COLUMN_MAP).sort_values()
df.columns = df.columns.map(NUMBER_TO_MEDALS_MAP)
df.plot(kind='bar', stacked=True,color =[MEDALS_COLOR_MAP.get(x, '#333333') for x in df.columns])
plt.tight_layout()
st.pyplot()
#THIRD PLOT
st.subheader('Medals By Sport Over Time by '+selected_country)
selected_sport = st.selectbox(label="Select Sport", options=SPORTS,index=3)
plt.figure()
df = country.historical_olympics_data_medals_per_year_by_sport(selected_sport)
df.columns = df.columns.map(MEDALS_COLUMN_MAP).sort_values()
df.columns = df.columns.map(NUMBER_TO_MEDALS_MAP)
df.plot(kind='bar', stacked=True,color = [MEDALS_COLOR_MAP.get(x, '#333333') for x in df.columns])
plt.tight_layout()
st.pyplot()
#FOURTH PLOT
st.subheader('Top 20 Sports Historically by '+selected_country+' by number of Medals')
plt.figure()
df = country.top_sports_historically()
df.columns = df.columns.map(MEDALS_COLUMN_MAP).sort_values()
df.columns = df.columns.map(NUMBER_TO_MEDALS_MAP)
df.plot(kind='barh', stacked=True,color = [MEDALS_COLOR_MAP.get(x, '#333333') for x in df.columns])
plt.tight_layout()
st.pyplot()
#FIFTH PLOT
st.subheader('Top Countries by Sport Historically')
plt.figure()
selected_sport_2 = st.selectbox(label="Select a Sport", options=SPORTS,index=3)
st.subheader(selected_sport_2+" Gold Medals won by Country since 1896")
country.get_country_medals_by_sport_historically(selected_sport_2).sort_values(ascending=True).tail(20).plot(kind='barh',color='#d4af37')
plt.tight_layout()
st.pyplot()
#SIXTH PLOT
st.header("Athlete Stats")
st.subheader('Compare Distribution of Athlete Metrics')
year_a = st.number_input('First Year',1896,2016,1992,step=4)
year_b = st.number_input('Second Year',1896,2016,2016,step=4)
metric_val = st.selectbox(label="Select Metric", options=["Age","Height","Weight"],index=0)
selected_sex = st.selectbox(label="Select Gender", options=["M","F","Both"],index=0)
metric_ranges = {"Age":range(15,65,5),'Height':range(140,225,5),'Weight':range(40,125,5)}
#SEVENTH PLOT
plt.figure()
histogram_charts = country.get_histogram(metric_val=metric_val,_range=metric_ranges[metric_val],year_a=year_a,year_b=year_b,sex=selected_sex)
st.subheader(metric_val+" Distribution "+str(year_a)+" vs "+str(year_b)+"         "+"Country:"+selected_country)
histogram_charts[0].plot(kind='bar',width=0.5,color='grey',legend=True)
histogram_charts[1].plot(kind='bar',width=0.20,color='red',legend=True)
plt.tight_layout()
st.pyplot()
#GLOBAL STATISTICS SECTION
st.header("Global Stats")
st.subheader("Women in the Olympics")
year_from = st.slider(label="compare Years", min_value=1896, max_value=2016, value=1960, step=4)
st.subheader("Number of Countries by % of Female Athletes")
#EIGHTH PLOT
plt.figure()
country.get_pct_women_athletes_globally(str(year_from),str(selected_year)).plot(kind='bar')
plt.tight_layout()
st.pyplot()
#NINETH PLOT
st.subheader("Percentage of Female Athletes by Sport")
list_of_sports = st.multiselect(label="Select Sports to Compare", options=SPORTS,default=["All","Cycling","Gymnastics"])
country.get_pct_women_athletes_by_sport(list_of_sports).plot(kind='line')
plt.tight_layout()
st.pyplot()
#TENTH PLOT
SPORTS = country.historical_sports_list
st.subheader("Compare Countries by Medals Won")
selected_sport_in_comp_table = st.selectbox(label="Filter Sport", options=SPORTS,index=3,key='22')
region_selection_list_in_comp_table = st.multiselect(label="Select Countries to Compare", options=regions_list.tolist(),default=["UK","United States"])
country.country_medals(selected_sport_in_comp_table, region_selection_list_in_comp_table).plot(kind='bar')
plt.tight_layout()
st.pyplot()