-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
80 lines (66 loc) · 2.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
__copyright__ = 'Copyright 2024, FCRLab at University of Messina'
__author__ = 'Lorenzo Carnevale <[email protected]>'
__maintainers__ = 'Serena Sebbio <[email protected]>'
__credits__ = 'Unversity of Messina (Italy)'
__description__ = 'CPU utilization prediction by using LSTM Federated Learning model'
import os
import json
import yaml
import logging
import argparse
from experiments.experiment_lstm import ExperimentFLLSTM
def setup_logging(logdir_name: str) -> None:
format = "%(asctime)s %(filename)s:%(lineno)d %(levelname)s - %(message)s"
datefmt = "%d/%m/%Y %H:%M:%S"
level = logging.INFO
filename = '%s/experiments.log' % logdir_name
logging.basicConfig(filename=filename, format=format, level=level, datefmt=datefmt)
def main():
description = ('%s\n%s\n%s' % (__author__, __maintainers__, __description__))
epilog = ('%s\n%s' % (__credits__, __copyright__))
parser = argparse.ArgumentParser(
description = description,
epilog = epilog
)
logdir_name = 'logs'
if not os.path.exists(logdir_name):
os.makedirs(logdir_name)
setup_logging(logdir_name)
parser.add_argument('-c', '--config',
dest='config',
help='YAML configuration file',
type=str,
required=True)
parser.add_argument('-m', '--metrics',
dest='metrics',
help='Metrics JSON file',
type=str)
options = parser.parse_args()
experiments = {
'fllstm': ExperimentFLLSTM,
}
with open(options.config) as f:
config = yaml.safe_load(f)
# results_dir = 'results-%s-%s/' % (config['experiment'], config['dataset_name'])
results_dir = 'results/'
if not os.path.exists(results_dir):
os.makedirs(results_dir)
if options.metrics:
with open(options.metrics) as f:
metrics = json.load(f)
experiment = experiments[config['experiment']](). \
build_configuration(config). \
build_metrics(metrics). \
build()
experiment.plot(results_dir) # produce plots
experiment.table(results_dir) # produce table
return
if options.config:
experiment = experiments[config['experiment']](). \
build_configuration(config). \
build_result_dir(results_dir). \
build()
experiment.learn() # produce metrics JSON file
return
if __name__ == "__main__":
main()