forked from JavierLopatin/Python-Remote-Sensing-Scripts
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Kmeans_clustering.py
executable file
·264 lines (205 loc) · 9.57 KB
/
Kmeans_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding: utf-8 -*-
"""
K-means clustering using Sentinel-1 and -2 data
- Use the SentinelHub package and account to download atmospherically
corrected Sentinel-2 and Sentinel-1 to the python session.
- Apply K-Mean clustering in iterative mode. Select the final number of
clusters accordingly to the silhouette score.
- Apply pre-processing functions, such as PCA transformation and Brightness
Normalization.
Created on Thu Aug 16 14:26:23 2018
@author: Javier Lopatin | [email protected]
"""
import numpy as np
import rasterio, rasterio.mask, fiona
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sentinelhub import WmsRequest, MimeType, CRS, BBox, CustomUrlParam, geo_utils, DataSource
################################
### functions
def plot_image(image, factor=1):
"""
Utility function for plotting RGB images.
"""
plt.subplots(nrows=1, ncols=1, figsize=(15, 7))
if np.issubdtype(image.dtype, np.floating):
plt.imshow(np.minimum(image * factor, 1))
else:
plt.imshow(image)
def run_Kmeans(raster, numSamples=10000, bnorm=False, pca=False, n_jobs=-2):
"""
select n number of pixeles to perform the clustering analysis
first, reshape image to be (rows*columns, bands)
Parameters:
- numSamples: number of random samples taken to train the cluster. Default = 10000
- bnorm: apply Brightness normalization to the data
- pca: apply principal component transformation to the data
- n_jobs: number of CPU cores to use. Default: all - 2
"""
X = np.reshape(raster, (rows*columns, raster.shape[2]))
# if brightness normalization
if bnorm == True:
def norm(r):
norm = r / np.sqrt( np.sum((r**2), 0) )
return norm
X = np.apply_along_axis(norm, 0, X)
# if pca
if pca == True:
X = PCA(n_components=X.shape[1]).fit_transform(X)
# select pixels
idx = np.random.randint(X.shape[0], size=numSamples)
samples = X[idx, :]
###############
### fit K-means
# select a suitable number of clusters according to silhouette_score
range_n_clusters = range(2, 33, 2)
for n_clusters in range_n_clusters:
clusterer = KMeans(n_clusters = n_clusters, random_state=10, n_jobs=n_jobs)
cluster_labels = clusterer.fit_predict(samples)
silhouette = silhouette_score(samples, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is:", silhouette)
"""
Stop!!! ask for the best n_Clusters to be used. Enter the number in the terminal
"""
bestCluster = input("Please enter your selected number of clusters: ")
# run KMeans one last time using the selected number of clusters
kmeans = KMeans(n_clusters = int(bestCluster), random_state=123, n_jobs=n_jobs)
cluster_labels = kmeans.fit_predict(samples)
silhouette = silhouette_score(samples, cluster_labels)
predCluster = kmeans.predict(X)
# reshape prediction to shape (rows, columns)
predCluster = np.reshape(predCluster, (rows, columns))
# save kmeans clustering as:
output = "Sentinel_40m_kmeans_"+bestCluster+"k.tif"
if bnorm == True:
output = output[:-4] + "_bnorm.tif"
if pca == True:
output = output[:-4] + "_pca.tif"
# Update meta to reflect the number of layers; add dtype
meta.update(dtype=str(predCluster.dtype), count = 1)
# save cluster to disk
with rasterio.open(output, 'w', **meta) as dst:
dst.write(predCluster, 1)
return(predCluster)
######################################
### END FUNCTIONS
if __name__ == "__main__":
"""
Load Sentinel-1 and -1 images from SentinelHub
We selected 20m of spatial resolution for speed.
"""
# this is a personal code number. You need to add your own to work
INSTANCE_ID = '7748e676-f55c-4843-900b-1d3e2962a7f1'
# define study area.
# coordinate system is (longitude and latitude coordinates of upper left and lower right corners)
cauquenes_coords_wgs84 = [-72.802, -35.653, -72.030, -36.320]
cauquenes_bbox = BBox(bbox=cauquenes_coords_wgs84, crs=CRS.WGS84)
# check for pixels sizes to download the images
"""
20m: width=3570, height=3600
"""
geo_utils.bbox_to_resolution(cauquenes_bbox, 1570, 1600)
########################################################
### Sentinel-2
# check for the last available S-2 image with less than 30% cloud cover
# only in RGB color for visualization
wms_true_color_request = WmsRequest(layer='TRUE-COLOR-S2-L1C',
bbox=cauquenes_bbox,
time=('2017-12-01', '2017-12-31'),
maxcc=0.2,
width=3570, height=3600,
instance_id=INSTANCE_ID)
# get all images to python session
wms_true_color_img = wms_true_color_request.get_data()
print('These %d images were taken on the following dates:' % len(wms_true_color_img))
for index, date in enumerate(wms_true_color_request.get_dates()):
print(' - image %d was taken on %s' % (index, date))
# see images one by one
plot_image(wms_true_color_img[1])
# Download raw bands of the selected image with 20m pixel size
wms_bands_request = WmsRequest(data_folder='test_dir_tiff',
layer='BANDS-S2-L1C',
bbox=cauquenes_bbox,
time='2017-12-10',
width=1570, height=1600,
image_format=MimeType.TIFF_d32f,
instance_id=INSTANCE_ID,
custom_url_params={CustomUrlParam.ATMFILTER: 'ATMCOR'})
# save image to disk just in case
wms_bands_img = wms_bands_request.save_data()
# load aimage to python session
wms_bands_img = wms_bands_request.get_data()
# see image
plot_image(wms_bands_img[-1])
########################################################
### Sentinel-2
### Sentinel-1 IW polyrization. Request RGB for visualizaation
s1_request = WmsRequest(data_source=DataSource.SENTINEL1_IW,
layer='TRUE-COLOR-S1-IW',
bbox=cauquenes_bbox,
time=('2017-12-05', '2017-12-15'),
width=1190, height=1200,
instance_id=INSTANCE_ID)
# get data to python session
s1_data = s1_request.get_data()
print('These %d images were taken on the following dates:' % len(s1_data))
for index, date in enumerate(s1_request.get_dates()):
print(' - image %d was taken on %s' % (index, date))
# plot images one by one
plot_image(s1_data[2])
# dowload raw bands of the selected image with 20m pixel size
s1_request = WmsRequest(data_folder='test_dir_tiff',
data_source=DataSource.SENTINEL1_IW,
layer='BANDS-S1-IW',
bbox=cauquenes_bbox,
time='2017-12-12',
width=1570, height=1600,
image_format=MimeType.TIFF_d32f,
instance_id=INSTANCE_ID)
# load data to python session
s1_data = s1_request.save_data()
#######################################################
### Analysis
# import raster. You also can use directly the loaded images from SentinelHub
S2 = "test_dir_tiff/S2_40m.tiff"
S1 = "test_dir_tiff/S1_40m_IW.tiff"
shp = "shapefile.shp" # study area to crop the images
# load shapefile geometry
with fiona.open(shp, "r") as shapefile:
features = [feature["geometry"] for feature in shapefile]
# open and crop S2
with rasterio.open(S2) as src:
img, transform = rasterio.mask.mask(src, features, crop=True)
meta = src.meta.copy() # save metadata info
meta.update({"driver": "GTiff", # update metadata geometry to the croped version
"height": img.shape[1],
"width": img.shape[2],
"transform": transform})
baseName = src.name # raster name
bands, rows, columns = img.shape # raster size
# open and crop S1. Metadata not needed, same specifications as S2
with rasterio.open(S1) as src:
img2, transform = rasterio.mask.mask(src, features, crop=True)
# stack S2 and S1 images
raster = np.concatenate((img, img2), axis=0)
# vosualize stacked raster
plot_image(raster[:,:,[8,4,3]])
# transpose raster to shape (rows, columns, bands)
raster = np.transpose(raster, [1,2,0])
##############################################################
### run K-means with differing pre-processing transformations
# KMeans with raw data
kmeans1 = run_Kmeans(raster)
plot_image(kmeans2)
# KMeans with PCA transformaiton
kmeans2 = run_Kmeans(raster, pca=True)
plot_image(kmeans2)
# KMeans with brightness normalization
kmeans3 = run_Kmeans(raster, bnorm=True)
plot_image(kmeans3)
# KMeans with brightness normalization and PCA transformaiton
kmeans4 = run_Kmeans(raster, bnorm=True, pca=True)
plot_image(kmeans4)